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Abstract Currently it is hard to develop UAV in civil environments, being simula-

tion the best option to develop complex UAV missions with AI. To carry out use-

ful AI training in simulation for real-world use, it is best to do it over a similar en-

vironment as the one a real UAV will work, with realistic objects in the scene of 

interest (buildings, vehicles, structures, etc.). This work aims to detect, recon-

struct, and extract metadata from those objects. A UAV mission was developed, 

which automatically detects all objects in a given area using both simulated cam-

era and 2D LiDAR, and then performs a detailed scan of each object. Later, a re-

construct process will create a 3D model for each one of those objects, along with 

a geo-referenced information layer that contains the object information. If applied 

on reality, this mission ease bringing real content to a digital twin, thus improving, 

and extending the simulation capabilities. Results show great potential even with 

the current budget specification sensors. Additional post-processing steps could 

reduce the resulting artefacts in the export of 3D objects. Code, dataset, and details 

are available on the project page: https://danielamigo.github.io/projects/soco22/ 

Keyword Object reconstruction, LiDAR-camera fusion, UAV simulation, Object 

detection, AirSim 

Introduction 

Unmanned Aerial Vehicles (UAV) are powerful tools capable of autonomously 

capturing the Earth at a given time. However, at present they are a technology that 

is neither smart nor robust enough to operate in cities along humans and are thus 
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considered potential hazards. They are strongly legislated to restrict its use in ha-

bited areas[1], [2]. Eventually this risk will disappear as UAV get smarter. For this 

reason, work must be pursued in order to operate them safely around humans 

while performing complex and risky tasks [3]. 

Software in the loop (SITL) simulation is the easiest way for develop and test 

complex UAV missions with zero damage. AirSim[4] is one of the most popular 

UAV simulator. Based on the popular Unreal Engine (UE4), it provides high visu-

al and customization capabilities, enabling to simulate sensors of the UAV such as 

lidar or cameras, or even to deploy multiple UAVs at the same time for swarm in-

teractions. AirSim is compatible with the highly used for Pixhawk 4 flight control-

ler (PX4) [5]. All these features make it perfect for testing UAV missions with Ar-

tificial Intelligence (AI) before applying them on the real world. 

A common problem in AI is introducing data into a model that is not close to the 

data used in training. Using simulation, it is easy to solve this problem for real-

world deployment. If the simulated mission environment is like the real world, the 

data captured by the simulated UAV will be similar too and therefore good for AI 

training a model that aims to perform in reality [6]. It is possible to fly over photo-

realistic environments on AirSim, but those won’t be as real environments. Ideal-

ly, the environment should be a digital representation of your own real environ-

ment, a digital twin. Creating them is a very complex and hard task [7]. It should 

recreate all static objects and habitual patterns of dynamics actors, such as people, 

vehicles, or animals. To generate digital twins of any location in the world the on-

ly feasible option is automatization using huge amounts of geolocated data. 

This work is a further step of [8] and [9], where we detected a specific object 

and geolocate it to enhance a digital twin. Now using simulation, we first create 

data with an autonomous flight mission but also automatically create 3D represen-

tations of any environment object using only UAVs. With it, a further process can 

automatically add those objects on the digital twin, improving it for future simula-

tion applications. The proposal tests realistic sensing using low-cost 2D LiDAR 

and an HD FPV camera. LiDAR sensor is used first to gather information of all 

the objects in a specific area. The UAV will then use its on-board capabilities to 

identify them and design a customized mission for each object detected, scanning 

it in detail with both sensors. After the flight, the 3D object reconstruction process 

fuses both sensors by coloring each LiDAR detection using the camera data and 

clean the data to get the object. Finally, it transforms the final point cloud into a 

3D object. The knowledge extracted of each object (position, height and the other 

metadata as the object type generated by image and point cloud classifiers) is also 

stored in a GIS format for other future uses. 

The results obtained are promising. The mission gathering component works as 

expected, perfectly identifying all objects in the mission, and performing a close 

and custom scanning for each object with both sensors. The 3D object reconstruc-

tion component results are good but could be improved with further post-

processes or fusion with other algorithms. In any case, the proposed mission au-

tomatically successfully solves an existing problem, easing the generation of digi-

tal twins. In conclusion, it has been exemplified how a UAVs work designed in 

this simulation framework can be successfully developed, reducing the friction 

when performing it in real drones. 
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Related works 

This section briefly introduces several studies of other researchers regarding the 

3D object reconstruction and of its detection using both point clouds and imagery. 

Although there are many sensors [10], not all of them are suitable for use in cur-

rent UAVs due to their size or weight. Object reconstruction can be performed on-

ly using camera data with algorithms as Structure from Motion (SfM). Its visual 

result is good, but the geometry is not reliable. It can also be done by LiDAR, 

generating precise geometry but lacking color or texture. Many researchers use 

drones for large areas reconstruction, but not specifically for object reconstruction. 

For example, [11] uses LiDAR to precisely map an excavated surface. With this 

approach no objects are scanned in detail, only a global view, so it is not ideal for 

digital twins [12]. [13] proposal is the only one found attempting to reconstruct a 

specific object with a UAV mission. They use a camera and SfM to reconstruct. 

Although camera and LiDAR can work separately, it is typical they are fused for 

these tasks as they have high synergy. The image contains a lot of information 

with high detail and color, while the LiDAR is composed of lots of individual 

measurements, highly detailed in shape, but colorless. For example, [14] uses the 

point cloud from a Terrestrial Laser Scanning to improve the geometry of the 

point cloud obtained from SfM with a drone flight, obtaining very good results. 

Despite the approach or the sensor, the goal is to generate only a 3D representa-

tion of an object, so it requires segmentation algorithms for discarding the infor-

mation that does not belong to the object, as the floor, walls, or other objects. This 

task can be performed before the main reconstruction, by removing junk infor-

mation from each raw data, or after generating the 3D point cloud, by detecting 

specific point cloud points not belonging to the object. 

On the other hand, our proposal aims to detect objects in real time and at the end 

classify them in order to generate additional metadata. The object detection prob-

lem is a common task when dealing with point clouds. Clustering and segmenta-

tion algorithms can easily discriminate and group them to achieve the desired so-

lution. The object classification approaches use deep learning to train 

convolutional networks for detecting patterns in images or point clouds relating a 

specific class. There are few researches, such as [15], that try to combine both in 

the same procedure. Image-based solutions are widely studied whereas the 3D so-

lutions are relatively unexplored. 
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Figure 1 – Simulation framework interconnection diagram 
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Simulation Framework 

Several components need to be combined in order to make this realistic simula-

tion work correctly. This section explains the key aspects of each component and 

its logical connection with the others. A diagram illustrating the interactions be-

tween all components is provided on Figure 1. 

First, it is needed to define the mission to perform; what will the UAV do, with 

which sensors and where. A JSON file defining the drones’ characteristics must be 

provided to AirSim, the central element of the framework. The UAV mission is 

designed as fully autonomous, simulating a UAV on-board processor that receives 

all sensors data and send to the flight controller the movements commands when 

needed, according to the mission stage. The mission process needs to connect both 

with AirSim to retrieve sensors data capturing the Unreal Engine environment at a 

specific time and place, and with MAVSDK library to communicate with PX4, to 

send those custom movement commands but also to receive telemetry updates to 

make onboard missions adjustments. 

Furthermore, we have the UE4 environment, built around the Cesium plugin for 

Unreal. It adds a digital twin of the whole Earth, with its texture formed by satel-

lite images and a global elevation model. It also adds a global coordinate system 

allowing to match the PX4 coordinates with the digital twin, making it possible to 

simulate UAV flights over real locations on the Cesium virtual Earth. Note that it 

is only a template, it does not bring the actual objects and dynamic behaviors into 

the simulator by default. 

Proposed process 

This section introduces the process to automatically detect and reconstruct 3D 

objects using LiDAR and camera fusion onboard of a UAV. The process is com-

posed by two main blocks. The first, detailed in Figure 2, performs a completely 

autonomous UAV mission first detecting all objects in a specific area and then 

performing a custom mission to scan in detail each object. Then, detailed on Fig-

ure 4, an offline process creates the 3D mesh by colorizing the LiDAR point 

cloud and discarding all points which are not part of the object. The output is the 

mentioned 3D mesh of each object but also a GIS layer with object metadata. 

The mission parameters must be defined manually, both drone settings with the 

JSON file explained earlier and the parameters of the algorithms to adjust the mis-

sion operation. It also requires the area where to scan for objects. 

An illustration of the data gathering component is provided in Figure 3. The 

first step is to connect with AirSim and MAVSDK, and then to take-off. Once it is 

done, the mission starts, flying directly to the input area at constant altitude. When 

the UAV arrives at that position, it starts its sensors and starts the first part of the 

data gathering mission. It performs a sweep capturing all possible objects within 
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the orbit with both LiDAR and camera. Then, the data is processed onboard to 

identify the objects placement and dimensions. 

After this initial sweep, the process performs a LiDAR points analysis. First it 

merges all point clouds into one and applies the RANSAC algorithm to discard the 

floor points from the rest. Then, a DBSCAN algorithm is applied to cluster the 

point cloud in groups, identifying how many objects are and to know its position-

ing and dimensions. Using each group point cloud the process can design and per-

form a custom orbit around the object, from top to bottom, so both sensors capture 

it perfectly. Once the UAV performs the last orbit almost hitting the ground, it 

comes back to the origin point following the same initial path. 

Data gathering component

Takeoff and fly to the 

desired area

Sensors captured data

+ UAV telemetry

Perform the orbit mission

Identifying

objects area

Return to Home 

using the same path

Perform the initial LiDAR scan 

for object detection

Process it to identify 

objects’ position

Creation of the scan mission 

for each object

 

Figure 2 – Data gathering component 

 

 

Figure 3 – UAV mission illustration 
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Reconstruction component
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Figure 4 – Reconstruction process 

 

After all data is captured and the UAV is back, the 3D object reconstruction pro-

cess is performed. The process gets each capture data at a specific time: a trio 

formed by the camera snapshot, LiDAR points and the UAV’s position and rota-

tion matrix. The aim is to project each one of those LiDAR points into the camera 

snapshot, obtaining a RGB color for the LiDAR point. To do that, the LiDAR tri-

dimensional point is transformed to the camera coordinate system, and then insert-

ed on the snapshot, using the intrinsic camera parameters. 

With all LiDAR points colorized, the next step merges all of them into one point 

cloud. As done onboard, this detailed point cloud has noise. To discard those non-

desired points, it performs first RANSAC algorithm to remove the floor and then 

DBSCAN to remove other points not from this object. 

Finally, the process applies the Poisson Surface Reconstruction algorithm to 

transform the final colorized point cloud it to a final 3D mesh. 

The process at the end also generates a GIS layer with metadata for further uses. 

Specifically, it adds the object positioning, dimensions, and orientation. It also 

contains the object type, a useful attribute for all kinds of future processes. It is 

calculated by applying two classifiers, one image-based, applied to all the snap-

shots captured during the detailed scan, based on VGG16 and trained with Mi-

croImageNet dataset. The other is a 3D mesh classifier to classify the final 3D ob-

ject. The classifier is based on PointNet++[16] and trained with CAD data from 

ModelNet40[17]. If both classifiers conclude the object class is the same, that val-

ue is added. 

Demonstration and evaluation 

To demonstrate the potential of the developed system, an example mission of the 

whole process using the presented simulation framework is performed. It contains 

three objects in the same area: a sculpture, a building, and a car. They are separat-

ed from each other for around 10 meters, as illustrated on Figure 6(a) and Figure 

7. Those will be detected using the sensors illustrated at Figure 5. They have the 
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following characteristics: The camera (represented in blue) has 1920x1080 resolu-

tion, 120º horizontal FOV and it is placed as a FPV view, and the 2D LiDAR (rep-

resented in green): 10 rotations per second, 30.000 points per second, 165º FOV. 

1080px

1920px

120º FOV

165º 

FOV

 

Figure 5 – LiDAR (green) and camera (blue) installed on AirSim’s UAV 

 

First, the drone performs the object detection, going to the specified position, 

and making an orbit with a radius of 30 meters, obtaining Figure 6(b) colorized 

LiDAR point cloud. Then, the point cloud is processed as explained, obtaining 

three clusters shown in Figure 6(c). It is noteworthy that the building is not com-

pletely detected, which could lead to an inaccurate scanning mission design. 

After it, the specific scans are performed with orbits at constant altitude, start-

ing from its height and with one meter spacing between them. 

 (a) Environment image (b) LiDAR point cloud  (c) Segmented point cloud 

Figure 6 – Data gathering object detection example 

 

  

Figure 7 – Orbits and detected objects in GIS (left). Metadata of car GIS layer (right) 

 

The results for each object are illustrated at Figure 8. A visual analysis reveals 

gaps in the rows of 2D LiDAR points, which may cause trouble to the mesh gen-

eration algorithm. Also, in (c) it is noticeable how the meshes are illumination-
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dependent, as the car's front has sunlight reflected in the snapshots which is then 

transferred to the 3D model. In (e) it is observed that LiDAR data is missing in the 

chimney, although it is fairly well solved in (f). In contrast, in the roof behind the 

stairs, Poisson Surface Reconstruction generates a kind of imaginary bubble. The 

same happens in (i). Finally, the bottom of all 3D models is less detailed. This 

may be justified by the rough cropping of the ground, causing the scan mission not 

to perform lower orbits. 

(a) Original object (b) Segmented point cloud (c) Reconstructed 3D mesh 

(d) Original object (e) Colorized point cloud (f) Reconstructed 3D mesh 

(g) Original object (h) Colorized point cloud (i) Reconstructed 3D mesh 

Figure 8 – Demonstration 3D mesh generation 

 



9 

Conclusions and perspectives 

This work proves the potential of designing autonomous drone missions using a 

realistic simulation framework, which can facilitate the development of complex 

tasks with AI prior to their actual operation. 

The data gathering components work well, detecting and performing a scanning 

mission using only onboard processing. However, the proposed solution is still at 

an early stage, and for actual deployment it should be more robust, for example 

avoiding obstacles during the mission or considering complex cases as whether 

the object is close to a wall, denying the drone the acquisition of data in such a 

perspective. 

In addition, the proposed 3D reconstruction process works well but improve-

ments are possible. Further work will be applied to quantify the results with dif-

ferent metrics for this colorizing LiDAR points approach. It should also be com-

pared with alternatives such as SfM or deep learning approaches such as NERF, 

the best quality results may be obtained by combining several of them. Anyway, 

this way is a good alternative, as it requires low computational resources. 

Other future developments must be seeking for a more robust object type classi-

fier. Also, in using the object type in the 3D mesh generation, maybe as a post-

processing. Lastly, to incorporate the 3d meshes automatically into the digital 

twin. 
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