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Abstract. Geographic Information Systems (GIS) allow analysis based on geo-
referenced data. Currently only simple geo-referenced information is available,
such as road networks or types of terrain, but there are other geo-referenced data
that would be very useful to facilitate decision-making. These data are not collected
as they are very hard to generate manually, but remote sensing data and artificial
intelligence can be used to accomplish it. This work aims to develop an automatic
framework for the extraction of geo-referenced trees, through the union Light
Detection and Ranging (LiDAR) point clouds, aerial imagery, and existing GIS
environment context. The results of the process are satisfactory, improving in some
several areas the LiDAR-based detections using only imagery. However, issues
such as false positives need to be corrected in the future. Merging both data sources
would allow better results to be achieved.
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1 Introduction

Georeferenced information has been essential for decision-making for centuries. Car-
tography traditionally produced manual and reliable representations of the surface of
the Earth, as elevation contours, terrain types, or road networks. As computers grew,
this information moved to a digital format. Today, advances in sensing techniques make
possible to obtain more reliable information through automated processes, resulting in
more detailed digital maps.

Geographic Information Systems (GIS) are software applications capable of pro-
cessing maps and geo-referenced data, allowing the analysis of all kinds of information,
such as images of the earth’s surface, polygons representing types of urban areas or
objects, or vectors forming road networks. There is open-source geo-referenced data,
such as terrain elevation models or road networks. However, specific datasets that could
be useful for research have not yet been extracted, stored, or published online.

The identification of individual objects is, in some cases, a very time-consuming
task to perform manually. However, thanks to new algorithms and sensors combined

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
H. Sanjurjo González et al. (Eds.): SOCO 2021, AISC 1401, pp. 1–10, 2022.
https://doi.org/10.1007/978-3-030-87869-6_28

A
ut

ho
r 

Pr
oo

f

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-87869-6_28&domain=pdf
https://doi.org/10.1007/978-3-030-87869-6_28


2 D. Amigo et al.

with improved computing capabilities, it is possible to perform this task automatically
and with greater accuracy. Nevertheless, current sensors still do not fully capture the
environment, so it is common to fuse several sensors’ information to improve positioning
and accuracy. Trees are an important item not available individually in GIS datasets.
Climate change makes them a critical element for the future and having a database
which identifies each tree uniquely could benefit scientific analysis. It could also help
with other tasks, such as forest risk and fire mitigation, or the rapid recognition and
response to other real problems, such as a fungus drying out holm oaks in Spain [1, 2].

This paper proposes a solution that combines two low-resolution sensors to extract
trees’ positions automatically. It uses the LiDAR sensor to generate detections based
on the elevation of the point cloud automatically. These detections are transformed to
bounding boxes in an orthophoto, allowing a neural network to learn the pixels that form
a tree, thus automatically detecting other trees that are not detected by the LiDAR due to
its low resolution. In addition, during the process, existing GIS information is exploited,
such as roads or buildings, where trees cannot be found, solving some of the drawbacks
of LiDAR approaches. The results of the process are promising, achieving results like
those obtained by LiDAR, but with better adjustment of the bounding-box on the tree.
Even so, some problem cases should be solved in the future. A fusion of all data in the
same procedure would allow a more accurate mapping of the trees.

This paper is organized as follows: Sect. 2 explains the sensors data used in this
paper and state-of-the-art methods for detecting individual trees with them. Section 3
introduces the proposed framework in detail, and Sect. 4 evaluates the results through
illustrative examples of the framework compared to using LiDAR alone. Finally, the
conclusions and perspectives for future works are presented in Sect. 5.

Fig. 1. Orthophoto crop and LiDAR quadrants
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2 Related Work

The detection of individual trees using machine learning and deep learning techniques is
not a new research field, but it has regained interest in the last decade, as the tech-
nology allows the problem to be handled faster and more accurately. Researchers
have approached the problem in different ways, depending on the data used to extract
detections. This section explores several approaches for the sensors used in this work.

The dataset used is provided by the Spanish National Aerial Orthophotography Plan
(PNOA) [3]. Carried out in 2016 through aerial photogrammetric flights, provides infor-
mation of high-precision cameras and multispectral cameras with a spatial resolution
of 25 cm and LiDAR point clouds with different densities across the territory. For this
paper’s experiments, a subset of Colmenarejo is used, the town where one of the cam-
puses of the University Carlos III of Madrid (UC3M) is. Figure 1 shows the orthophoto
fragment and the 20 LiDAR sets to be used. Specifically, it is an extension of 20 km2,
where a total of 51.5 million LiDAR points were captured. This generates an average
of 2.575 points per m2, a low number to perform an accurate detection. Because of this
low resolution, solutions that combine different sensors are also being explored.

2.1 LiDAR-Based Tree Detection Approaches

A LiDAR device, which stands for Light Detection and Ranging, measures the distances
from the device to multiple points around it by calculating the delay between an emission
and its subsequent detection. These points, knowing the device’s position, can be geopo-
sitioned, thus generating a three-dimensional space that corresponds to reality. LiDAR
technology is becoming more and more popular due to its low cost and capabilities, for
instance in unmanned aerial vehicle (UAV) flights.

Using it from aerial view pointing to the surface, these points can be used for tree
detection by measuring the variation in altitude of nearby points. However, object detec-
tion requires high sensor resolution or multiple flights at low altitude to achieve good
results. If the point density is low, it may not detect trees or even generate false positives,
e.g., with poles or lampposts. Li et al. [4], Hamraz et al. [5], Jeronimo et al. [6], Liu
et al. [7], Silva et al. [8] are some of the most relevant works in identifying individual
trees from LiDAR.

LiDAR can also be used for object detection from other perspectives. Babahajiani
et al. [9] detects trees using 3D LiDAR at street level, but its structure is too complex
for this use.

2.2 Aerial Imagery-Based Tree Detection Approaches

A second approach is to use aerial imagery. Satellites, aircraft flights or unmanned aerial
vehicles can take high-resolution snapshots, on a fairly regular basis and periodically.
Using the RGB channels of these images, deep learning can be performed to detect trees.
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Another approach to the problem is to use aerial imagery. Satellites, airborne flights,
or UAVs can take high-resolution snapshots, in a very regular and periodic manner. Deep
learning can be performed using their RGB channels to detect trees.

Schnell [10] reviews tree monitoring methods, where many image -based and
satellite-based works are highlighted. Malkoç [11] detects trees outside forests from
satellite elevation, but does not perform an individual tree segmentation. Ardila et al.
[12] uses satellite special sensors: pan-chromatic and multispectral layers.

As with LiDAR, static terrestrial objects can be geolocated using images from the
Earth’s surface. The approaches are different, taking advantage of the detection of the
same object from different perspectives, as Lumnitz et al. [13] or Laumer et al. [14]
does.

2.3 Sensor Fusing Tree Detection Approaches

Several researchers have identified the need to fuse several sensors in one process
to obtain better results in several ways: avoiding false positives, adding additional
information, or improving accuracy.

Silva et al. [8] uses aerial LiDAR detection, but uses it to complement and add
information on GPS detections next to each tree, merging both detections and correcting
possible noise from GPS measurements. Wegner and Branson [15, 16] fuses detections
by means of imagery, mainly street view, but also accepts aerial. Each detection is
calculated separately, and they are fused by giving at each measure a specific weighting.

3 Proposed Framework

The aim of this work is to develop a process that takes advantage of two complementary
sensors with low resolution, LiDAR, and aerial imagery, to obtain a better result in the
tree detection. This section presents the description of the algorithms used and their
workflow. Figure 2 illustrates this process structure, composed of three main blocks:

Cleaning component

Aerial image component

LiDAR component

CHM extrac on and terrain 
normaliza on LiDAR detec ons

Tree crowns detec on Individual tree segmenta on
LiDAR Cloud Points

LiDAR detec ons to 
bounding-boxes in 

orthophotoFull Orthophoto

Split bounding-boxes in train 
and test sets Train network Save trained 

model

Run model over valida on 
orthophoto Aerial image 

detec ons
Valida on 

Orthophoto

Open Street Maps

Remove detec ons overlapping with 
buildings, roads or monumentsCleaned LiDAR 

detec ons

Fig. 2. Tree detection process
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1. A LiDAR component extracts individual trees from the input point cloud.
2. A cleaning process removes erroneous detections using context information.
3. The individual tree detection component using imagery. Using the prior cleaned

detections, they are converted to the image and used to training a prediction model.

3.1 LiDAR Component

The LiDAR component is developed using the LidR library [17]. This R package provides
tools for tree detection with LiDAR data. First, the points on the ground surface, which
could not be trees, are removed from the point cloud, easing further processes. To do
this, the Digital Terrain Model (DTM), the terrain level, is extracted and normalized,
eliminating the variation in ground level, setting the entire area to the same elevation.
With this normalised terrain, the Canopy Height Model (CHM) is extracted, containing
only the points elevated above the ground.

Next, the Local Maximum Filter (LMF) algorithm [8] is used on the CHM to detect
tree crowns. By sliding a window over the point cloud, it finds the local maximum points
in height, each one being a tree at the output of the process. This algorithm is essential
in the LiDAR component, and therefore requires that the window size is appropriate for
the input data, so that it does not miss when several trees are nearby, but only detects
the highest one. Specifically, in this work, local maximums are found from a minimal
height of 1.5 m, and a circular window of 3.5 m in diameter is used (Fig. 3).AQ2

Fig. 3. Local maxima filter example (+ marker). Blue represent DTM, the rest is CHM [17]

Once the canopy positions are known, the segmentation process is performed by
defining which points in the point cloud belong to each tree. For this process, the algo-
rithm of Silva et al. [8] has been selected, as it obtained good results with the default
parameters [18]. If the detailed height and number of trees were known, a manual adjust-
ment would have to be applied, but in the problem this is unknown. This segmentation
step uses the Voronoi tessellation with the detected crowns as centroids, calculating the
area of each individual tree over the remaining CHM points.
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3.2 Cleaning Component Using GIS Data Context

The LMF process produces well-known false positives, as it only picks through the
point elevation, failing at lampposts, road signs, buildings, or any other object. As
LiDAR segmentation algorithms do not have any protection and generate erroneous
trees, this process has been developed, proposing a post-cleaning algorithm to eliminate
such erroneous detections, whenever they are known to be wrong.

For this, the context of the area provided by OpenStreetMaps (OSM) is used, elim-
inating false tree detections in land areas that are unlikely to contain a tree, such as
buildings, roads, sports facilities, or monuments. Figure 4 illustrates its functioning on
the university campus. Note that it is important that the GIS data used must be well
matched. Trees can be very close to roads or buildings, so a criterion for removal is
added, only if the tree overlaps more than 50% of its area with the desired surface.

Fig. 4. Context cleaning on LiDAR detections

3.3 Imagery Component

After cleaning the LiDAR detections, the image detection component is next. But first,
it is necessary to transform the LiDAR detections to bounding boxes in the image pixels.
Figure 5 shows this transformation process, converting each bounding-box from the
global coordinate system (WGS-84) to the image coordinate system (EPSG:3345).

Cleaned LiDAR 
detec ons

Cleaned LiDAR 
Bounding-box
on orthophoto

Merge LiDAR 
detec ons 3D Point cloud 2D Point cloud

2D WGS-84 
bounding-box

2D EPSG:3345 
bounding-box

2D pixel 
bounding-box

Fig. 5. LiDAR detections to orthophoto

Once the detections in the image are determined, they are divided into training, test,
and validation. For validation, the quadrant 414–4489 containing the university campus
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(see Fig. 1) is chosen, while the rest is divided into 70% training and 30% testing
randomly. DeepForest [19, 20] is the deep learning software used to detected the trees.
It is based on RetinaNet, a good and proven solution for aerial image detection [21].

After the whole process, a trained model capable of detecting trees only by aerial
imaging is obtained. For it to work properly, the prediction image should have a similar
terrain type, trees, and resolution to those used for training.

This model adds robustness to the process, finding trees that the LiDAR compo-
nent might have missed due to its low resolution, and even recovering trees that were
incorrectly removed in the cleaning process.

4 Results Analysis

After applying the LiDAR detection component in the 19 quadrants for training and
testing, 263,509 trees are detected. Of these, 20,044 are removed because they coincide
with buildings or sports fields. Another 1,406 are removed because they overlap with
roads (although many of them are not mapped in OSM). The remaining trees are used
to train the image of quadrant 414–4489 in Fig. 1.

As there is no individual tree dataset for the area, the analysis performed is based
on several images (Fig. 7, Fig. 8 and Fig. 9) to comment several remarkable findings,
and by comparing the LiDAR detections along the quadrant and those generated by
the imagery model explained above. Specifically, 4,759 are the tree detections in the
university quadrant using only LiDAR and cleaning, while 3,816 are with the full process.

There are cases where the model generates false positives, especially in urban areas,
due to clear colour variations caused by the presence of tree-like shadows. It is also dif-
ficult to detect trees within the pavement, probably due to the limited training examples,
as the campus is a different environment.

However, the LiDAR component can detect trees with a small area, typical in the
campus, which the vision model is unable to detect because they are so narrow. Con-
versely, it can also be seen how the network detects large trees slightly better, with one
bounding-box where LiDAR tends to generate multiple ones or doing it too small for the
tree area. This behaviour is due to the limitations of the LMF algorithm, as some trees
are not detected and, in some cases because of the low resolution of the LiDAR, they are
not correctly modelled in the segmentation process. Figure 6 illustrates this bounding
box size difference between the two series.

Fig. 6. Area of bounding-boxes in LiDAR and imagery (squared metres)
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Fig. 7. First results comparison

Figure 9 shows how the LiDAR process errs with the university monument generating
fake detections. As such geolocated information is not available, these detections have
not been eliminated in the cleaning process, thus the imagery model has learned this
pattern. In addition, due to the window used in the LMF algorithm, it does not generate
detections of nearby trees either, being the robustness of the image system the one that
detects them. Nevertheless, Fig. 8 shows a non-urban area with high density of trees and
the same behaviour can be observed: larger bounding-boxes and some additional ones
by the full process are found with respect to the LiDAR and cleaning processes.

Fig. 8. Non-urban results Fig. 9. Results near monument and small
trees

5 Conclusions and Perspectives

This work demonstrates the potential of automatically generating GIS datasets by using
only aerial imagery. Also, the transfer of LiDAR detections to imagery detections for
training allows the generation of an automatic process with a lot of potential. The results
are positive, but this first version needs to be refined before real use, solving several
existing problems due to the lack of sensitivity of LiDAR or the false positives encoun-
tered by the imagery model. The integration of existing GIS data to improve detection
solutions is an unexplored branch of the literature which shows potential.
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Further research can be developed in a variety of directions:

• Fine-tune of the current process, adjusting its current algorithms or designing new
ones, by integrating both information sources into a unified process, aiming for better
detection results.

• Validate the process with different scenarios, ideally with high quality data. One
option is to generate an own dataset by flying UAVs with sensors equipped at a lower
altitudes and different angles can also be incorporated. Trying to extract additional
information from the GIS layers, such as tree type, facilitating real analysis, which
requires a greater amount of information that distinguishes the tree.

• Exploiting and adapt the process developed for the detection of other useful static
information, such as building walls and fences, or power lines.

• Finally, the application of this generated GIS data to demonstrate its utility. For exam-
ple, a current open line is the realistic recreation of the three-dimensional environment
to perform UAV flight simulations, in which tree location is very useful.
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References

1. Vivas, M., Hernández, J., Corcobado, T., Cubera, E., Solla, A.: Transgenerational induction
of resistance to Phytophthora cinnamomi in Holm Oak. Forests 12, 100 (2021). https://doi.
org/10.3390/f12010100

2. Rodríguez-Romero, M., Godoy-Cancho, B., Calha, I.M., Passarinho, J.A., Moreira, A.C.:
Allelopathic effects of three herb species on Phytophthora cinnamomi, a pathogen causing
severe oak decline in mediterranean wood pastures. Forests 12, 285 (2021). https://doi.org/
10.3390/f12030285

3. Instituto Geográfico Nacional, Centro Nacional de Información Geográfica: Plan Nacional
de Ortofotografía Aérea. https://pnoa.ign.es/

4. Li, W., Guo, Q., Jakubowski, M.K., Kelly, M.: A new method for segmenting individual trees
from the LIDAR point cloud. Photogramm. Eng. Remote Sens. 78, 75–84 (2012). https://doi.
org/10.14358/PERS.78.1.75

5. Hamraz, H., Contreras, M.A., Zhang, J.: A robust approach for tree segmentation in deciduous
forests using small-footprint airborne LiDAR data. Int. J. Appl. Earth Obs. Geoinf. 52, 532–
541 (2016). https://doi.org/10.1016/j.jag.2016.07.006

6. Jeronimo, S.M.A., Kane, V.R., Churchill, D.J., McGaughey, R.J., Franklin, J.F.: Applying
LiDAR individual tree detection to management of structurally diverse forest landscapes. J.
Forest. 116, 336–346 (2018). https://doi.org/10.1093/jofore/fvy023

7. Liu, J., Shen, J., Zhao, R., Xu, S.: Extraction of individual tree crowns from airborne LiDAR
data in human settlements. Math. Comput. Model. 58, 524–535 (2013). https://doi.org/10.
1016/j.mcm.2011.10.071

8. Silva, C.A., et al.: Imputation of individual longleaf pine (Pinus palustris Mill.) tree attributes
from field and LiDAR data. Can. J. Remote Sens. 42, 554–573 (2016). https://doi.org/10.
1080/07038992.2016.1196582

A
ut

ho
r 

Pr
oo

f

https://doi.org/10.3390/f12010100
https://doi.org/10.3390/f12030285
https://pnoa.ign.es/
https://doi.org/10.14358/PERS.78.1.75
https://doi.org/10.1016/j.jag.2016.07.006
https://doi.org/10.1093/jofore/fvy023
https://doi.org/10.1016/j.mcm.2011.10.071
https://doi.org/10.1080/07038992.2016.1196582


10 D. Amigo et al.

9. Babahajiani, P., Fan, L., Kämäräinen, J.-K., Gabbouj, M.: Urban 3D segmentation and mod-
elling from street view images and LiDAR point clouds. Mach. Vis. Appl. 28(7), 679–694
(2017). https://doi.org/10.1007/s00138-017-0845-3

10. Schnell, S., Kleinn, C., Ståhl, G.: Monitoring trees outside forests: a review. Environ. Monit.
Assess 187(9), 1–17 (2015). https://doi.org/10.1007/s10661-015-4817-7

11. Malkoç, E., Rüetschi, M., Ginzler, C., Waser, L.T.: Countrywide mapping of trees outside
forests based on remote sensing data in Switzerland. Int. J. Appl. Earth Obs. Geoinf. 100,
102336 (2021). https://doi.org/10.1016/j.jag.2021.102336

12. Ardila, J.P., Tolpekin, V.A., Bijker, W., Stein, A.: Markov-random-field-based super-
resolution mapping for identification of urban trees in VHR images. ISPRS J. Photogramm.
Remote Sens. 66, 762–775 (2011). https://doi.org/10.1016/j.isprsjprs.2011.08.002

13. Lumnitz, S., Devisscher, T., Mayaud, J.R., Radic, V., Coops, N.C., Griess, V.C.: Mapping
trees along urban street networks with deep learning and street-level imagery. ISPRS J.
Photogramm. Remote Sens. 175, 144–157 (2021). https://doi.org/10.1016/j.isprsjprs.2021.
01.016

14. Laumer, D., Lang, N., van Doorn, N., Mac Aodha, O., Perona, P., Wegner, J.D.: Geocoding
of trees from street addresses and street-level images. ISPRS J. Photogramm. Remote Sens.
162, 125–136 (2020). https://doi.org/10.1016/j.isprsjprs.2020.02.001

15. Wegner, J.D., Branson, S., Hall, D., Schindler, K., Perona, P.: Cataloging public objects using
aerial and street-level images — urban trees. In: 2016 IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), Las Vegas, NV, USA, pp. 6014–6023. IEEE (2016)

16. Branson, S., Wegner, J.D., Hall, D., Lang, N., Schindler, K., Perona, P.: From google maps
to a fine-grained catalog of street trees. ISPRS J. Photogramm. Remote Sens. 135, 13–30
(2018). https://doi.org/10.1016/j.isprsjprs.2017.11.008

17. Roussel, J.-R., et al.: lidR: An R package for analysis of Airborne Laser Scanning (ALS) data.
Remote Sens. Environ. 251, 112061 (2020). https://doi.org/10.1016/j.rse.2020.112061

18. Zaforemska, A., Xiao, W., Gaulton, R.: Individual tree detection from UAV LIDAR data in a
mixed species Woodland. Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci. XLII-2/W13,
657–663 (2019). https://doi.org/10.5194/isprs-archives-XLII-2-W13-657-2019

19. Weinstein, B.G., Marconi, S., Bohlman, S., Zare, A., White, E.: Individual tree-crown detec-
tion in RGB imagery using semi-supervised deep learning neural networks. Remote Sens. 11,
1309 (2019). https://doi.org/10.3390/rs11111309

20. Weinstein, B.G., Marconi, S., Aubry-Kientz, M., Vincent, G., Senyondo, H., White, E.P.:
DeepForest: a Python package for RGB deep learning tree crown delineation. Methods Ecol.
Evol. 11, 1743–1751 (2020). https://doi.org/10.1111/2041-210X.13472

21. Li, K., Wan, G., Cheng, G., Meng, L., Han, J.: Object detection in optical remote sensing
images: a survey and a new benchmark. ISPRS J. Photogramm. Remote Sens. 159, 296–307
(2020). https://doi.org/10.1016/j.isprsjprs.2019.11.023

A
ut

ho
r 

Pr
oo

f

https://doi.org/10.1007/s00138-017-0845-3
https://doi.org/10.1007/s10661-015-4817-7
https://doi.org/10.1016/j.jag.2021.102336
https://doi.org/10.1016/j.isprsjprs.2011.08.002
https://doi.org/10.1016/j.isprsjprs.2021.01.016
https://doi.org/10.1016/j.isprsjprs.2020.02.001
https://doi.org/10.1016/j.isprsjprs.2017.11.008
https://doi.org/10.1016/j.rse.2020.112061
https://doi.org/10.5194/isprs-archives-XLII-2-W13-657-2019
https://doi.org/10.3390/rs11111309
https://doi.org/10.1111/2041-210X.13472
https://doi.org/10.1016/j.isprsjprs.2019.11.023


Author Queries

Chapter 28

Query Refs. Details Required Author’s response

AQ1 Please check and confirm if the authors given and family names
have been correctly identified.

AQ2 Please check and confirm if the inserted citation of Fig. 3 is correct.
If not, please suggest an alternate citation.

A
ut

ho
r 

Pr
oo

f



MARKED PROOF

Please correct and return this set

Instruction to printer

Leave unchanged under matter to remain

through single character, rule or underline

New matter followed by

or

or

or

or

or

or

or

or

or

and/or

and/or

e.g.

e.g.

under character

over character

new character 

new characters 

through all characters to be deleted

through letter   or

through characters

under matter to be changed

under matter to be changed

under matter to be changed

under matter to be changed

under matter to be changed

Encircle matter to be changed

(As above)

(As above)

(As above)

(As above)

(As above)

(As above)

(As above)

(As above)

linking characters

through character    or

where required

between characters or

words affected

through character    or

where required

or

indicated in the margin

Delete

Substitute character or

substitute part of one or

more word(s)
Change to italics

Change to capitals

Change to small capitals

Change to bold type

Change to bold italic

Change to lower case

Change italic to upright type

Change bold to non-bold type

Insert ‘superior’ character

Insert ‘inferior’ character

Insert full stop

Insert comma

Insert single quotation marks

Insert double quotation marks

Insert hyphen

Start new paragraph

No new paragraph

Transpose

Close up

Insert or substitute space

between characters or words

Reduce space between
characters or words

Insert in text the matter

Textual mark Marginal mark

Please use the proof correction marks shown below for all alterations and corrections. If you  

in dark ink and are made well within the page margins.

wish to return your proof by fax you should ensure that all amendments are written clearly


