
XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE

Automatic context learning based on 360 imageries
triangulation and 3D LiDAR validation

Daniel Amigo, David Sánchez Pedroche, Jesús García, José Manuel Molina

Group GIAA, University Carlos III of Madrid, Spain

Email: { damigo, davsanch, jgherrer } @ inf.uc3m. es, molina@ ia.uc3m. es

Abstract— Geographic data is very valuable for decision

making. There are many hand-adapted datasets of roads or

buildings available. However, datasets of other objects are not

available, and it is very difficult to generate them manually.

Remote sensing can help us to generate datasets of specific

objects. This work introduces the main components for an

automatic dataset generation process using any kind of sensors.

To validate this process, an implementation using an open-

source dataset is developed, geolocating traffic barriers using

360-degrees images captured from a car. Its results are

validated with the positions extracted from a 3D LiDAR, solving

the same problem at a much lower cost, providing an acceptable

error for some use cases.

Keywords — GIS data, triangulation, object geolocation,

context learning, 360 imagery, 3D LiDAR

I. INTRODUCTION

Technology has reached the point where there are
electronic devices everywhere on the planet capable of
recording information from every part of the world massively.
Satellites, surveillance cameras, sensors in autonomous
vehicles, smartphones, ... are devices that allow the capture of
data from different points of view, dynamics, and data forms.
This information, besides its main use, can be reused and
exploited for other applications. One of them is the capacity
to detect and collect additional information from the
environment they are capturing, generating georeferenced
information useful for other processes.

The well-known Geographic Information Systems (GIS)
allow the visualization of geolocalised data. These systems
feature multiple algorithms implemented to provide complex
analysis and decision-making. Geolocated information is very
useful, but it is limited and hard to access. Road networks,
buildings, terrain type, etc. are examples of accessible and
hand-generated georeferenced information. In contrast,
datasets of other objects are neither georeferenced nor
accessible to the general public. Knowing the precise location
of less relevant real-world objects is also necessary for several
use cases. For example, a simplified representation of the
world is used to run simulations, but the more information you
have, the better solutions will be obtained. It can also be useful
information for autonomous vehicles, better knowing and
adapting to the context in which they move. It is even possible
to reach a hive mind, generating and iteratively improving GIS
detections from open-source projects such as OpenStreetMaps
(OSM), processing the detections provided by different users.

These non-mapped and static objects, such as bins, trees,
electricity poles or fountains, due to their minor relevance and
large amount of them, make a manual mapping unfeasible.
Artificial intelligence techniques can overcome this problem.
Using algorithms that process real-world detections, detecting
and estimating the position and orientation of objects,

automatically generating these datasets. This approach allows
the generation of datasets at little cost, requiring only a dataset
of detections of an area and a computing system with such
algorithms. For example, a video captured by a smartphone
together with its GPS position and orientation records the state
of a specific place and time. This also applies, in a different
shape form, with detections from a LiDAR sensor of an
autonomous vehicle. This information represents
environmental objects of different characteristics: size,
movement, or relevance. Moreover, all the detections, even
from different sensors, can be fused, obtaining better results
as more captures are taken.

This work aims at introducing the general components that
an automated process must have to identify and georeference
objects nearby using real-world detections, regardless of the
sensor that captures it. It starts with the object detection on the
sensor data, continues with the association of same object
across all sensor measurements and ends with the
tridimensional estimation of its position and orientation. The
advantages and drawbacks that the fusion of different sensors
detecting the same object can provide are also introduced,
with respect to processes that only exploit a single sensor.

After the process is introduced, its feasibility is shown for
real-world data detecting traffic barriers with an approach that
exploits several sensors. Specifically, a dataset with 360-
degree images is used, which also provides the detection and
classification of the objects in each image. In addition, it has
a ground truth of the position of the objects, extracted by an
3D LiDAR, which enables the validity of the estimations to be
evaluated.

As several components of the process are already provided
by the dataset, this paper focuses on the geolocalisation
component through images. The implemented algorithm is
based on triangulation, through cameras' orientation, their
field of view (FOV) and the position of the bounding box
representing the object detection. For each frame, a line is
extracted estimating the orientation of the object, although it
cannot geolocate it, as the distance to the object is unknown.
Applied to all the frames, dozens of lines are generated.

These lines are the ones in charge of generating the
estimation of the position, by means of their intersections.
These lines are the ones in charge of generating the estimation
of the position, by means of their intersections. This dataset
has many detections per object, some closer and some further
away from the object. Depending on the object detection
frame, each line is more or less accurate. Two further analyses
are performed to discard the lines intersections that insert
more error into the estimation, thus obtaining an accurate
estimation of the object's position and orientation.

Finally, the 55 barriers detected in the dataset are
compared to the dataset barriers' ground truth to analyse the

Authorized licensed use limited to: UNIVERSIDAD CARLOS III MADRID. Downloaded on April 17,2022 at 09:54:53 UTC from IEEE Xplore. Restrictions apply.

results of the process. This analysis is performed by using
several metrics covering the error of the estimated three-
dimensional object. The results demonstrate the feasibility of
the problem, with less than two metres of error in position and
15 degrees of orientation. Even so, this research field has a lot
of potential to be studied. Among other possibilities, the
feasibility of the process with other sensors and even their
fusion, or the improvement of the proposed triangulation-
based system, could be explored.

This paper is organized as follows: Section II introduces
similar works in the literature, which geolocate objects
through different sensors detections. Then, Section III
describes the proposed workflow, highlighting the main
components and providing a few sensor-specific adjustments.
In Section IV, the workflow with 360-degree imagery is
presented. Its geolocation component is thoroughly detailed
providing challenging scenarios and evaluating the accuracy
of the estimations against the ground truth of the dataset.
Lastly, conclusions and future works perspectives are
presented in Section V.

II. STATE OF THE ART

Several researchers have studied the ability to exploit
sensing data to geolocate objects, generating or refining GIS
datasets. All of them have made specific approaches to their
solution and sensors. Generally speaking, there are several
works that partially summarise this line of research.

Osco et al[1] study reviews remote sensing applied to
UAV flights, in a very specific perspective. The main
components, sensors, and applications that these flights use,
highlighting the process of mapping objects, are analysed.
Alternatively, Li et al[2] overview mapping techniques
applied to automated driving, using different sensors and
techniques. This case analyses another type of perspective,
more focused on a Street view level.

Below, several specific approaches from the literature are
explained, focusing on vision approaches.

A. Camera-based

Cameras are the most common sensor for remote sensing.
They can either be applied through single images or video
through frame-by-frame analysis. Position estimation with
cameras is a well-explored problem in several approaches.
Several of the papers found in the literature perform the
approach at the street view level detecting some small and
medium sized objects, as others apply it to larger objects from
an aerial view.

Several researchers [3]–[6] use depth estimation to
estimate the distance of different detections from the camera
position. A stereo camera composed of two sensors is needed
to calculate the depth, although it can be estimated with high
accuracy with a single lens through AI as some works do.

Other researchers [5], [7]–[10] explore the triangulation
concept. Using mono-lens cameras, they take advantage of the
fact that multiple camera captures detect the same object at
different positions and angles. Fusing all the detections,
combined with the position and orientation of the camera, the
location of a specific target can be estimated
trigonometrically. For this approach, 360-degree image
datasets mounted on vehicles are commonly used, such as
Google Street View imagery.

Another way of obtaining images for geolocation is
crowdsourcing [8], [11]. Volunteers take photographs of
specific areas, which are later processed to generate a
geolocalised dataset. There is an added complication of
adjusting the algorithm to images from different devices.
Furthermore, the GPS accuracy of each device cannot be
heavily trusted. This means that the geolocation accuracy
might be poor in certain detections. Even so, it potentially has
a higher number of detections.

B. Fusing vision with other sensors

Each sensor can collect independent information about the
object to be geolocated. Combining different sensors together
generates greater data from the same scene, which can
potentially enable a possible better detection. It is common to
combine the RGB channels of a camera together with other
sensors, such as LiDAR lasers, sonar or radar to detect
distances of nearby objects in different directions with
precision, or hyperspectral sensors that obtain the magnetic
spectrum.

Kozonek et al. [12] and Chen et al.[13]] fuse LiDAR and
video to detect objects and generate more accurate bounding-
boxes, while Wang et al. [14] fuse video and radar to improve
detections. Duarte et al[15] use UAV flight-collected data
from imaging and multispectral sensors to geo-reference and
analyse areas with specific vegetation parameters. Shah[16]
maps an iceberg by sensing from a ship equipped with two
sensors: a multibeam sonar to detect the geometry and a
camera. Aubry-Kientz et al[17] fuse detections from airborne
laser scanning, cameras and hyperspectral sensors to improve
detection and segmentation of trees from aerial view.

III. GENERAL PROCESS

As already introduced, this work aims to establish a
methodology with general components that any process of
geolocation of individual objects should have. Figure 1 shows
these components, for any type of sensor. Note that depending
on the sensor each component is different, so this cannot be
specified all in detail. However, the inputs and outputs of each
component are described as well as explaining certain aspects
according to the usual sensors.

Object detection and

segmentation

GIS layer

with objects

geolocated

Object matching across

detections and sensors

Geolocalization

estimation

Sensor raw

detections +

sensor position

Unique object

all detections

Figure 1 – Proposed process diagram

The first component represents the collection of all

detections from the sensors used, generating the initial
database. As discussed above, many sensors can be
introduced, such as cameras generating images or video; point
clouds from a LiDAR; direction, and distance from sonar or
radar; etc. In addition, it is required to store exactly the time
of measurement and the position and orientation of the sensor.
It is important to remember that the object being geolocated is
tridimensional, so covering the whole surface of the object
ensures that its entire shape will be known in detail. If the

Authorized licensed use limited to: UNIVERSIDAD CARLOS III MADRID. Downloaded on April 17,2022 at 09:54:53 UTC from IEEE Xplore. Restrictions apply.

detections do not cover it all, the object shape will be predicted
in the unobserved areas.

Using each raw measurement as input, the object detection
component generates a list with all the detections. Each
detection is represented as a bounding box that wraps the
small percentage of the entire measurement that belongs to the
object. By using AI techniques such as neural networks,
clustering or segmentation algorithms, it is possible to detect
different objects with high accuracy. However, this step is
complex and requires a lot of work and training to be able to
detect all objects observed in the scene individually.
Moreover, a good bounding-box fit is necessary, as the better
the detection, the better the next components will perform.
Once the objects have been detected, it is necessary to double-
check that all detections are individual. Object detection
algorithms sometimes creates a detection framing several
objects if they are close to each other. Therefore, it might be
necessary to apply a segmentation algorithm, which can
separate the object detections in detail.

The next task, called matching or association, consists of
relating those object detections of the same object in different
measurements. Each measurement captures the same
environment, albeit from different angles and distances,
captures the same objects. This task should give each
detection a unique ID that is repeated in each measurement
where the same object is found. This procedure can be carried
out in different ways, either online or offline. Such tasks are
performed by tracking or multi-tracking algorithms, which are
able to relate dynamics that are occurring over consecutive
measurements. In video for example, it looks for the similar
pixels in the bounding-box with slight displacements on the
consecutive measurements, whereas in other sensors

providing position or direction information, such position can
be derived by the sensing motion and the sensor's positioning.

After this procedure, for each object, all its detections are
identified per capture and per sensor. This list is used by the
next process, along with the position of the sensor at each
measurement to identify the three-dimensional position of the
object to be geolocated. This step has variable complexity,
depending on the sensor used. Sensors which measure
distances facilitates the process, while image sensors as they
do not generate this information needs to infer it. In both cases,
these processes will estimate the position and rotation by
fusing these measurements, obtaining the most accurate
detection possible. This geolocation process is first carried out
in local units, calculating the distance from the sensor position
to the object. Later, it is necessary to apply spatial
transformation equations to a global measurement, allowing it
to be entered into any GIS system. It should be noted that the
measurements of the detected object may not show the full
geometry of the object. Therefore, if available, it is important
to use the object context to correctly identify both the position
and orientation of the object.

The proposed process has few general components but
obtaining good results on this problem is not easy. The
development of each component is complex, and there are
accurate solutions for each one, but none sufficiently robust to
be the problem completely solved. Therefore, such systems
tend to rely on the fusion of well-calibrated and
complementary sensors to facilitate and enhance each
individual component. For example, LiDAR cannot easily
detect an object form, but it knows the distance to the object.
Alternatively, it is also possible to fuse the results afterwards,
by performing the complete process for each sensor separately
and joining them together to obtain a better estimate.

Figure 2 – Object geolocation example

Authorized licensed use limited to: UNIVERSIDAD CARLOS III MADRID. Downloaded on April 17,2022 at 09:54:53 UTC from IEEE Xplore. Restrictions apply.

IV. 360 IMAGERY BARRIER GEOLOCATION

A. General description

Once the general process has been introduced, the
feasibility of this process is demonstrated by setting specific
sensors, sensing type and target to be geolocated. This
experiment aims to extract the position and orientation of
temporary traffic barriers using a 360-degree video dataset at
a street-level view.

The motive of this experiment is the study and feasibility
of translating real-world objects into a three-dimensional
representation, recreating reality as faithfully as possible.
Such 3D environments will be used by the drone research
branch of the research group, where they first develop in a
simulator and then apply IA techniques on real UAVs. The
more realistic the simulator and test scenario are, the better AI
and results will be in the real world.

The dataset used is nuScenes[18]. Composed of detections
from several sensors mounted on a vehicle, this is widely used
by researchers for the planning and control of autonomous
vehicles. Specifically, it has six cameras that form a 360+
image of the vehicle, five radars around the vehicle and a 3D
LiDAR. In addition, it has GPS, IMU, etc. for accurate
positioning and orientation of the car. In addition to raw
detections, it has pre-processed information and useful
algorithms to facilitate research tasks, such as object
detections and object classifications across the sensors, or
their precise three-dimensional positioning and orientation.
An example of the dataset information is shown in Figure 3.

Figure 3 – nuScenes 3D LiDAR and camera detections

The dataset provides 23 different object types classified,

some static such as the barrier to be detected, but most of them
are dynamic, such as people or vehicles. In total, it has 1.4
million images, but for practicality as the aim is to validate
that the process works, an available and reduced version of the
dataset is used.

This experiment uses only 360 imageries to estimate the
position and orientation of the object. The goal is to validate
the feasibility of the project at a low cost, and to be able to
replicate it in other environments. However, this dataset is still
useful for this work, as it allows to compare the estimated
position and orientation with their calculated ground truth
using the 3D LiDAR. This enables the process and the system
validation, so that metrics can be gathered to decide whether
this process is valid under different scenarios.

B. Geolocation estimation

The implemented image-based geolocation component is
exclusively based on the triangulation of different
snapshots[19]. It is inspired by Zhang's work[10] with Line of
Bearing (LOB) and has been extended to detect volumetric
objects and their orientation rather than simple points on the
map. The present work also establishes some criteria for
finding the best possible geolocation, discarding noisy inputs.

The dataset used provides the precise georeferenced
position and orientation of the car and its sensors at each
snapshot, as well as the sensors intrinsic features. By having
this information available, such as the field of view (FOV), it
is possible to specify the area that each sensor covers in each
sensing on a map.

In addition, the resolution of the camera is known.
Specifically, it is 1600 pixels in width and 900 pixels in height.
These 1600 pixels are within the camera's horizontal field of
view, being endless long vertical planes gathering RGB data.
These planes can be easily visualised in the well-known bird's
eye view (BEV), as it is in Figure 4, drawing with a top view
the car (the line represents the car’s orientation), its sensors,
the sensor's FOV with a triangle, and the lines representing the
infinite plane.

On the other hand, we have the barrier detections, which
are represented in each snapshot with a rectangular bounding-
box that frames the object. These bounding boxes can be used
to identify from these 1600 vertical planes the ones that
correspond to the orientation detected by the barrier. In
particular, the proposed algorithm selects three planes: the
central plane of the bounding-box, used to accurately locate
the centre of the object, and the two sides of the bounding-
box, which are used to find the orientation of the object. In
Figure 4 these three planes are drawn: the left ones in blue,
centre in green and right in red.

Specifically, for each detection and zone of the object to
be positioned, the process performs:

1. The vertical plane on the image is obtained for the area of
the object to be positioned, called ��������	
� .

2. With it, the difference in angle with respect to the image
centre is obtained, by knowing the FOV of the camera.

3. This direction value is transformed to the relative
coordinates, by knowing the position and orientation of
both the car and the sensor, and therefore the object's
direction can be obtained.

������������
�
���� =

���

2
−

���

����� �!"#
· ��������	
�

��������� = %�&��� + (�)*+&��� + ������������
�
����

The planes delimit the area where the object is located, but
they are not able to estimate the distance of the object from the
camera, so they cannot locate it with a single image. By
exploiting all the snapshots that detect the same object, it is
possible to estimate the distance to the object. Applying the
same process with each detection, N lines representing the
same object are generated. To calculate the intersection ,-, /0
of two lines and � described as �- + �/ + � = 0 the
following equation is used:

Authorized licensed use limited to: UNIVERSIDAD CARLOS III MADRID. Downloaded on April 17,2022 at 09:54:53 UTC from IEEE Xplore. Restrictions apply.

,-, /0 = ,
�� · �2 − �2 · ��
�� · �2 − �2 · ��

,
�� · �2 − �2 · ��
�� · �2 − �2 · ��

0

By generating the intersections of these lines, 3 · ,3 − 10 25

position estimations of the object are obtained. The same
process applies to the lines on each side of the bounding-box,
finding intersections that represent each side. Using these
intersections, centroids can be calculated and taken as a good
estimate of each of the zones: centre and both sides. The
estimate of the object is placed centred on the central centroid,
while the orientation of the barrier can be calculated
trigonometrically using the line that joins the two sides.

As each barrier has fixed dimensions, it can be drawn
correctly in the BEV view. The true barrier can also be drawn
to compare the result of the process and determine how good
the process is. As shown in Figure 4 example, they are
identical in position and slightly different in orientation.

Figure 4 – Triangulation illustration process

This example’s estimation is almost perfect, with multiple

detections really close and covering it well. Nevertheless, A
further analysis is necessary to assess whether this process is
accurate enough in all scenarios. Therefore, the following
dataset information and generated metrics are extracted from
all detections of the mini dataset introduced above.

For each object, by comparing the estimated object with
the real object detected by the 3D LiDAR:

- The yaw angle error in degrees.
- The overlap percentage in BEV view.
- The error of position of each side and centre.

For each snapshot and bounding box of a barrier:

- The height, width, and area of the bounding box in
pixels.

- The distance from the sensor to the object.

- For each line of this frame (centre and sides) the
positional error between the centroid of their
intersections and the real position.

The used dataset contains 10 different scenes, of which 3

detect barriers. In total, there are 71 barriers. After applying
the geolocation process on them, it has been observed that one
scene is only the car stopped, detecting the barriers several
times at the same spot. The triangulation algorithm requires
several snapshots at different locations. For this reason, a
restriction is added to the triangulation frame input: if the car
has not moved more than 1 meter from an already selected
frame, that frame is dropped. This process takes all 16 barriers
out from the that scenario, thus having a total of 55 unique
barriers. In addition, to carry out correctly the triangulation
process, a minimum of 3 frames are required.

Figure 5 – Triangulation example with erroneous intersections

An analysis of the results obtained is carried out. Only 19

of the 55 overlaps with the real barrier. On average they have
2.9 metres of error and 27 degrees in orientation with respect
to the real position. These results show that the process is
satisfactory, but there are some issues that need to be
addressed, as in Figure 5. Some intersections have a clear
centroid, but many others are spread out, some of them into
infinity and some even on the other side of the car. Both cases
are detrimental to the centroid obtained and therefore the
barrier estimation.

C. Misplaced intersections cleaning

All these intersections theoretically represent the same
place, but they are not located in the same position. This gap
is caused by the imprecision of the cameras, as well as by the
bounding-box fitting at each frame. The further away the
sensor is from the object, the fewer pixels it represents, and
the more uncertainty is introduced to the system by its line. In
addition, if the object detection process includes more pixels
than it should, more error is introduced into the process.

Authorized licensed use limited to: UNIVERSIDAD CARLOS III MADRID. Downloaded on April 17,2022 at 09:54:53 UTC from IEEE Xplore. Restrictions apply.

Therefore, it is necessary to apply a system that
discriminates between harmful intersections and removes
them from the process, resulting in better results. In this work
two potential improvements have been implemented.

It has been observed that there are intersections whose
location is outside what the image should see, considering the
position, orientation and FOV of the sensors capturing that
object. It does not help to use such intersections, as one of the
two lines is poorly aligned and generates this noise. Therefore,
this first improvement calculates the intersection of FOV
areas, eliminating those intersections from the triangulation
process that fall outside this area. A representation of this area
can be seen in Figure 6, Figure 7 and Figure 8.

This criterion eliminates many bad intersections, although
in some cases several intersections have been found tending
to infinity inside this FOV area. These intersections usually
occur with car lines far away from the object when the object
cannot be correctly enclosed. The farther away from the
object, the lower the precision of the image and therefore the
bounding-box is. These lines produce intersections that are far
away from each the others, causing the centroid to be
displaced and the result to be poor.

Figure 6 – Barrier intersections discarded due to FOV intersection

To overcome it, several options can be studied to limit

these intersections. For example, not generating intersections
between almost parallel lines, restricting further the lines to be
used by the position of the car or by using only snapshots with
bounding-boxes large enough implying that the sensor is
closer to the object. The available GIS context could also be
used to reduce intersections to only valid locations,
eliminating those at buildings or other roads that are occluded
from view.

Figure 7 – Figure 6 zoomed in FOV intersection

Figure 8 – Complex barrier estimation

Alternatively, the implemented approach eliminates the

intersections that are considered outliers in relation to the
centroid generated by all the intersections. After calculating
the distance of each intersection to the centroid, the
interquartile range and quartiles are extracted, eliminating the
noisy intersections through a statistical analysis. Those whose
distance is below Q1-1.5IQR or above Q3+1.5IQR are
discarded. With the remaining intersections a new centroid is
calculated which should be more accurate. With this
improvement another metric can be calculated, the percentage
of intersections discarded as outlier.

Both processes are complementary to each other, first by
obtaining the intersections within the FOV, and then by the

Authorized licensed use limited to: UNIVERSIDAD CARLOS III MADRID. Downloaded on April 17,2022 at 09:54:53 UTC from IEEE Xplore. Restrictions apply.

outlier’s elimination. It is to be expected that as more and more
criteria are applied to resolve found issues, the better the
results will be.

Even with these improvements, there are complex cases,
as shown in Figure 8. In this case, both the FOV and the outlier
detection do their job, but because all the shots are from the
same orientation, with the car moving away from the object,
there is no correct intersection, thus the triangulation does not
estimate the position correctly.

D. Metrics and results

Using the metrics introduced above, several experiments
are carried out with the 55 barriers available. Specifically, the
original test with all intersections (All), and two further tests,
one for each proposed improvement (NoOut and FOV). Also,
both improvements together are tested (FOVNoOut).

Figure 9, Figure 10 and Figure 11 show the main metrics
calculated, represented with a boxplot diagram, showing
quartiles, interquartile range, and outliers. With dashed lines
the mean and standard deviation are shown too. Specifically,
these show the difference in positioning error, from the centre
and on both sides, the percentage of overlap with the real
barrier and the error in barrier orientation, respectively.

It is more than evident that the results after intersection
cleaning improve in all metrics, obtaining a more than
reasonable accuracy for any further use.

Figure 9 – Position estimation error (meters)

Figure 10 – Overlap percentage with real barrier

Figure 11 – Yaw orientation error in degrees

Figure 12 – Estimated barriers in a GIS system

Figure 12 shows the result of switching all detections to a

GIS system. Comparing the true barriers with the original and
improved estimations, the effects discussed in the previous
metrics are observed. By having all the barriers at once, the
barriers closer to the vehicle trajectory are significantly better
placed, while those further away are a bit more scattered,
although they are still good enough to be a fully automatic
solution. Still, in some cases the barriers do miss, requiring
slight manual adjustment for more precise applications.

V. CONCLUSIONS AND PERSPECTIVES

Quality GIS datasets are important for multiple
applications and decision-making. This paper proposes a
process to obtain them automatically for any type of sensor
and detection. Furthermore, its feasibility is tested by a
specific example that detects traffic barriers through 360º
imaging. Although the process achieves decent results, there
is scope for improvement, either with this approach,
developing new ways to clean up noisy intersections, or by
exploring other imaging methods.

This work sets a base line of research to be continued in
future works. On the one hand, the feasibility of the process
should be tested through other types of sensors, such as
LiDAR. Also, whether it improves by fusing several sensors.
In addition, it is necessary to explore the process operation
from other perspectives as well as dealing with the third
dimension, for example from an aerial shot of a UAV. On the
other hand, the complete implementation of the system is of
interest, including the creation of an own dataset, as well as
the detection, association and position estimation of different
objects close to our environment.

Finally, it is necessary to exploit this generated
information. For example, by generating the above-mentioned
3D environments that represent the real world more
accurately. To illustrate the capabilities enabled by this
process, Figure 13 shows a comparison between a dataset
snapshot and a simulator-generated one using the
georeferenced information extracted with this process. It has
been created using the AirSim drone simulator[20], based on
Unreal Engine, and the barriers are automatically placed by
the Cesium plugin[21] by means of its latitude and longitude.
In addition, a 3D reconstruction of the environment generated

Authorized licensed use limited to: UNIVERSIDAD CARLOS III MADRID. Downloaded on April 17,2022 at 09:54:53 UTC from IEEE Xplore. Restrictions apply.

with photogrammetry is used to provide a more realistic and
context-aware environments for our simulated UAV missions.

Figure 13 – Comparison between real dataset imagery and a
reconstructed scenario using the georeferenced barriers

VI. ACKNOWLEDGEMENT

This work was funded by public research projects of
Spanish Ministry of Economy and Competitivity (MINECO),
reference TEC2017-88048-C2-2-R.

REFERENCES

[1] L. P. Osco et al., ‘A Review on Deep Learning in UAV Remote
Sensing’, 2021, doi: 10.13140/RG.2.2.19456.66568/3.

[2] L. Li, M. Yang, Bing Wang, and C. Wang, ‘An overview on sensor
map based localization for automated driving’, in 2017 Joint Urban
Remote Sensing Event (JURSE), Dubai, United Arab Emirates, Mar.
2017, pp. 1–4. doi: 10.1109/JURSE.2017.7924575.

[3] C. Godard, O. M. Aodha, M. Firman, and G. Brostow, ‘Digging into
self-supervised monocular depth estimation’, in 2019 IEEE/CVF

international conference on computer vision (ICCV), 2019, pp. 3827–
3837. doi: 10.1109/ICCV.2019.00393.

[4] M. Li and W. Yao, ‘3D map system for tree monitoring in hong kong
using google street view imagery and deep learning’, ISPRS Ann.

Photogramm. Remote Sens. Spat. Inf. Sci., vol. V-3–2020, pp. 765–
772, Aug. 2020, doi: 10.5194/isprs-annals-V-3-2020-765-2020.

[5] V. Krylov, E. Kenny, and R. Dahyot, ‘Automatic Discovery and
Geotagging of Objects from Street View Imagery’, Remote Sens.,
vol. 10, no. 5, p. 661, Apr. 2018, doi: 10.3390/rs10050661.

[6] S. Lumnitz, T. Devisscher, J. R. Mayaud, V. Radic, N. C. Coops, and
V. C. Griess, ‘Mapping trees along urban street networks with deep
learning and street-level imagery’, ISPRS J. Photogramm. Remote

Sens., vol. 175, pp. 144–157, May 2021, doi:
10.1016/j.isprsjprs.2021.01.016.

[7] B. Soheilian, N. Paparoditis, and B. Vallet, ‘Detection and 3D
reconstruction of traffic signs from multiple view color images’,
ISPRS J. Photogramm. Remote Sens., vol. 77, pp. 1–20, Mar. 2013,
doi: 10.1016/j.isprsjprs.2012.11.009.

[8] S. Qiu, A. Psyllidis, A. Bozzon, and G.-J. Houben, ‘Crowd-mapping
urban objects from street-level imagery’, in The world wide web
conference, New York, NY, USA, 2019, pp. 1521–1531. doi:
10.1145/3308558.3313651.

[9] V. A. Krylov and R. Dahyot, ‘Object Geolocation Using MRF Based
Multi-Sensor Fusion’, in 2018 25th IEEE International Conference

on Image Processing (ICIP), Athens, Oct. 2018, pp. 2745–2749. doi:
10.1109/ICIP.2018.8451458.

[10] W. Zhang, C. Witharana, W. Li, C. Zhang, X. Li, and J. Parent,
‘Using Deep Learning to Identify Utility Poles with Crossarms and
Estimate Their Locations from Google Street View Images’, Sensors,
vol. 18, no. 8, p. 2484, Aug. 2018, doi: 10.3390/s18082484.

[11] V. A. Krylov and R. Dahyot, ‘Object geolocation from crowdsourced
street level imagery’, in ECML PKDD 2018 workshops, Cham, 2019,
pp. 79–83.

[12] N. Kozonek, N. Zeller, H. Bock, and M. Pfeifle, ‘On the fusion of
camera and lidar 3d object detection and classification’, ISPRS - Int.
Arch. Photogramm. Remote Sens. Spat. Inf. Sci., vol. XLII-2/W16,
pp. 149–156, Sep. 2019, doi: 10.5194/isprs-archives-XLII-2-W16-
149-2019.

[13] C. Chen, L. Z. Fragonara, and A. Tsourdos, ‘RoIFusion: 3D Object
Detection from LiDAR and Vision’, ArXiv200904554 Cs, Sep. 2020,
Accessed: May 29, 2021. [Online]. Available:
http://arxiv.org/abs/2009.04554

[14] Y. Wang, Z. Jiang, Y. Li, J.-N. Hwang, G. Xing, and H. Liu,
‘RODNet: A real-time radar object detection network cross-
supervised by camera-radar fused object 3D localization’, IEEE J.

Sel. Top. Signal Process., vol. PP, pp. 1–1, Feb. 2021, doi:
10.1109/JSTSP.2021.3058895.

[15] L. Duarte, A. C. Teodoro, J. J. Sousa, and L. Pádua, ‘QVigourMap: A
GIS Open Source Application for the Creation of Canopy Vigour
Maps’, Agronomy, vol. 11, no. 5, p. 952, May 2021, doi:
10.3390/agronomy11050952.

[16] V. Shah et al., ‘Multi-Sensor Mapping for Low Contrast, Quasi-
Dynamic, Large Objects’, IEEE Robot. Autom. Lett., vol. 5, no. 2, pp.
470–476, Apr. 2020, doi: 10.1109/LRA.2019.2962357.

[17] M. Aubry-Kientz et al., ‘Multisensor Data Fusion for Improved
Segmentation of Individual Tree Crowns in Dense Tropical Forests’,
IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens., vol. 14, pp. 3927–
3936, 2021, doi: 10.1109/JSTARS.2021.3069159.

[18] H. Caesar et al., ‘nuScenes: A multimodal dataset for autonomous
driving’, in 2020 IEEE/CVF conference on computer vision and

pattern recognition (CVPR), Jun. 2020, pp. 11618–11628. doi:
10.1109/CVPR42600.2020.01164.

[19] R. Hartley and A. Zisserman, Multiple View Geometry in Computer

Vision. West Nyack: Cambridge University Press, 2004. Accessed:
Apr. 17, 2021. [Online]. Available:
http://qut.eblib.com.au/patron/FullRecord.aspx?p=256634

[20] S. Shah, D. Dey, C. Lovett, and A. Kapoor, ‘AirSim: High-Fidelity
Visual and Physical Simulation for Autonomous Vehicles’,
ArXiv170505065 Cs, Jul. 2017, Accessed: Aug. 29, 2021. [Online].
Available: http://arxiv.org/abs/1705.05065

[21] Cesium GS, ‘Cesium for Unreal’.
https://cesium.com/platform/cesium-for-unreal/ (accessed Aug. 01,
2021).

Authorized licensed use limited to: UNIVERSIDAD CARLOS III MADRID. Downloaded on April 17,2022 at 09:54:53 UTC from IEEE Xplore. Restrictions apply.

