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Abstract— Geographic data is very valuable for decision 

making. There are many hand-adapted datasets of roads or 

buildings available. However, datasets of other objects are not 

available, and it is very difficult to generate them manually. 

Remote sensing can help us to generate datasets of specific 

objects. This work introduces the main components for an 

automatic dataset generation process using any kind of sensors. 

To validate this process, an implementation using an open-

source dataset is developed, geolocating traffic barriers using 

360-degrees images captured from a car. Its results are 

validated with the positions extracted from a 3D LiDAR, solving 

the same problem at a much lower cost, providing an acceptable 

error for some use cases. 
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I. INTRODUCTION 

Technology has reached the point where there are 
electronic devices everywhere on the planet capable of 
recording information from every part of the world massively. 
Satellites, surveillance cameras, sensors in autonomous 
vehicles, smartphones, ... are devices that allow the capture of 
data from different points of view, dynamics, and data forms. 
This information, besides its main use, can be reused and 
exploited for other applications. One of them is the capacity 
to detect and collect additional information from the 
environment they are capturing, generating georeferenced 
information useful for other processes. 

The well-known Geographic Information Systems (GIS) 
allow the visualization of geolocalised data. These systems 
feature multiple algorithms implemented to provide complex 
analysis and decision-making. Geolocated information is very 
useful, but it is limited and hard to access. Road networks, 
buildings, terrain type, etc. are examples of accessible and 
hand-generated georeferenced information. In contrast, 
datasets of other objects are neither georeferenced nor 
accessible to the general public.  Knowing the precise location 
of less relevant real-world objects is also necessary for several 
use cases. For example, a simplified representation of the 
world is used to run simulations, but the more information you 
have, the better solutions will be obtained. It can also be useful 
information for autonomous vehicles, better knowing and 
adapting to the context in which they move. It is even possible 
to reach a hive mind, generating and iteratively improving GIS 
detections from open-source projects such as OpenStreetMaps 
(OSM), processing the detections provided by different users.  

These non-mapped and static objects, such as bins, trees, 
electricity poles or fountains, due to their minor relevance and 
large amount of them, make a manual mapping unfeasible. 
Artificial intelligence techniques can overcome this problem. 
Using algorithms that process real-world detections, detecting 
and estimating the position and orientation of objects, 

automatically generating these datasets. This approach allows 
the generation of datasets at little cost, requiring only a dataset 
of detections of an area and a computing system with such 
algorithms. For example, a video captured by a smartphone 
together with its GPS position and orientation records the state 
of a specific place and time. This also applies, in a different 
shape form, with detections from a LiDAR sensor of an 
autonomous vehicle. This information represents 
environmental objects of different characteristics: size, 
movement, or relevance. Moreover, all the detections, even 
from different sensors, can be fused, obtaining better results 
as more captures are taken. 

This work aims at introducing the general components that 
an automated process must have to identify and georeference 
objects nearby using real-world detections, regardless of the 
sensor that captures it. It starts with the object detection on the 
sensor data, continues with the association of same object 
across all sensor measurements and ends with the 
tridimensional estimation of its position and orientation. The 
advantages and drawbacks that the fusion of different sensors 
detecting the same object can provide are also introduced, 
with respect to processes that only exploit a single sensor. 

After the process is introduced, its feasibility is shown for 
real-world data detecting traffic barriers with an approach that 
exploits several sensors. Specifically, a dataset with 360-
degree images is used, which also provides the detection and 
classification of the objects in each image. In addition, it has 
a ground truth of the position of the objects, extracted by an 
3D LiDAR, which enables the validity of the estimations to be 
evaluated. 

As several components of the process are already provided 
by the dataset, this paper focuses on the geolocalisation 
component through images. The implemented algorithm is 
based on triangulation, through cameras' orientation, their 
field of view (FOV) and the position of the bounding box 
representing the object detection. For each frame, a line is 
extracted estimating the orientation of the object, although it 
cannot geolocate it, as the distance to the object is unknown. 
Applied to all the frames, dozens of lines are generated.  

These lines are the ones in charge of generating the 
estimation of the position, by means of their intersections. 
These lines are the ones in charge of generating the estimation 
of the position, by means of their intersections. This dataset 
has many detections per object, some closer and some further 
away from the object. Depending on the object detection 
frame, each line is more or less accurate. Two further analyses 
are performed to discard the lines intersections that insert 
more error into the estimation, thus obtaining an accurate 
estimation of the object's position and orientation. 

Finally, the 55 barriers detected in the dataset are 
compared to the dataset barriers' ground truth to analyse the 
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results of the process. This analysis is performed by using 
several metrics covering the error of the estimated three-
dimensional object. The results demonstrate the feasibility of 
the problem, with less than two metres of error in position and 
15 degrees of orientation. Even so, this research field has a lot 
of potential to be studied. Among other possibilities, the 
feasibility of the process with other sensors and even their 
fusion, or the improvement of the proposed triangulation-
based system, could be explored. 

This paper is organized as follows: Section II introduces 
similar works in the literature, which geolocate objects 
through different sensors detections. Then, Section III 
describes the proposed workflow, highlighting the main 
components and providing a few sensor-specific adjustments. 
In Section IV, the workflow with 360-degree imagery is 
presented. Its geolocation component is thoroughly detailed 
providing challenging scenarios and evaluating the accuracy 
of the estimations against the ground truth of the dataset. 
Lastly, conclusions and future works perspectives are 
presented in Section V. 

II. STATE OF THE ART 

Several researchers have studied the ability to exploit 
sensing data to geolocate objects, generating or refining GIS 
datasets. All of them have made specific approaches to their 
solution and sensors. Generally speaking, there are several 
works that partially summarise this line of research. 

Osco et al[1] study reviews remote sensing applied to 
UAV flights, in a very specific perspective. The main 
components, sensors, and applications that these flights use, 
highlighting the process of mapping objects, are analysed. 
Alternatively, Li et al[2] overview mapping techniques 
applied to automated driving, using different sensors and 
techniques. This case analyses another type of perspective, 
more focused on a Street view level. 

Below, several specific approaches from the literature are 
explained, focusing on vision approaches. 

A. Camera-based 

Cameras are the most common sensor for remote sensing. 
They can either be applied through single images or video 
through frame-by-frame analysis. Position estimation with 
cameras is a well-explored problem in several approaches. 
Several of the papers found in the literature perform the 
approach at the street view level detecting some small and 
medium sized objects, as others apply it to larger objects from 
an aerial view. 

Several researchers [3]–[6] use depth estimation to 
estimate the distance of different detections from the camera 
position. A stereo camera composed of two sensors is needed 
to calculate the depth, although it can be estimated with high 
accuracy with a single lens through AI as some works do. 

Other researchers [5], [7]–[10] explore the triangulation 
concept. Using mono-lens cameras, they take advantage of the 
fact that multiple camera captures detect the same object at 
different positions and angles. Fusing all the detections, 
combined with the position and orientation of the camera, the 
location of a specific target can be estimated 
trigonometrically. For this approach, 360-degree image 
datasets mounted on vehicles are commonly used, such as 
Google Street View imagery. 

Another way of obtaining images for geolocation is 
crowdsourcing [8], [11]. Volunteers take photographs of 
specific areas, which are later processed to generate a 
geolocalised dataset. There is an added complication of 
adjusting the algorithm to images from different devices. 
Furthermore, the GPS accuracy of each device cannot be 
heavily trusted. This means that the geolocation accuracy 
might be poor in certain detections. Even so, it potentially has 
a higher number of detections. 

B. Fusing vision with other sensors 

Each sensor can collect independent information about the 
object to be geolocated. Combining different sensors together 
generates greater data from the same scene, which can 
potentially enable a possible better detection. It is common to 
combine the RGB channels of a camera together with other 
sensors, such as LiDAR lasers, sonar or radar to detect 
distances of nearby objects in different directions with 
precision, or hyperspectral sensors that obtain the magnetic 
spectrum. 

Kozonek et al. [12] and Chen et al.[13] ] fuse LiDAR and 
video to detect objects and generate more accurate bounding-
boxes, while Wang et al. [14] fuse video and radar to improve 
detections. Duarte et al[15] use UAV flight-collected data 
from imaging and multispectral sensors to geo-reference and 
analyse areas with specific vegetation parameters. Shah[16] 
maps an iceberg by sensing from a ship equipped with two 
sensors: a multibeam sonar to detect the geometry and a 
camera. Aubry-Kientz et al[17] fuse detections from airborne 
laser scanning, cameras and hyperspectral sensors to improve 
detection and segmentation of trees from aerial view. 

III. GENERAL PROCESS 

As already introduced, this work aims to establish a 
methodology with general components that any process of 
geolocation of individual objects should have. Figure 1 shows 
these components, for any type of sensor. Note that depending 
on the sensor each component is different, so this cannot be 
specified all in detail. However, the inputs and outputs of each 
component are described as well as explaining certain aspects 
according to the usual sensors. 

Object detection and 

segmentation

GIS layer 

with objects 

geolocated

Object matching across 

detections and sensors

Geolocalization 

estimation

Sensor raw 

detections + 

sensor position

Unique object 

all detections

 
Figure 1 – Proposed process diagram 

 
The first component represents the collection of all 

detections from the sensors used, generating the initial 
database. As discussed above, many sensors can be 
introduced, such as cameras generating images or video; point 
clouds from a LiDAR; direction, and distance from sonar or 
radar; etc. In addition, it is required to store exactly the time 
of measurement and the position and orientation of the sensor. 
It is important to remember that the object being geolocated is 
tridimensional, so covering the whole surface of the object 
ensures that its entire shape will be known in detail. If the 
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detections do not cover it all, the object shape will be predicted 
in the unobserved areas. 

Using each raw measurement as input, the object detection 
component generates a list with all the detections. Each 
detection is represented as a bounding box that wraps the 
small percentage of the entire measurement that belongs to the 
object. By using AI techniques such as neural networks, 
clustering or segmentation algorithms, it is possible to detect 
different objects with high accuracy. However, this step is 
complex and requires a lot of work and training to be able to 
detect all objects observed in the scene individually. 
Moreover, a good bounding-box fit is necessary, as the better 
the detection, the better the next components will perform. 
Once the objects have been detected, it is necessary to double-
check that all detections are individual. Object detection 
algorithms sometimes creates a detection framing several 
objects if they are close to each other.  Therefore, it might be 
necessary to apply a segmentation algorithm, which can 
separate the object detections in detail. 

The next task, called matching or association, consists of 
relating those object detections of the same object in different 
measurements. Each measurement captures the same 
environment, albeit from different angles and distances, 
captures the same objects. This task should give each 
detection a unique ID that is repeated in each measurement 
where the same object is found. This procedure can be carried 
out in different ways, either online or offline. Such tasks are 
performed by tracking or multi-tracking algorithms, which are 
able to relate dynamics that are occurring over consecutive 
measurements. In video for example, it looks for the similar 
pixels in the bounding-box with slight displacements on the 
consecutive measurements, whereas in other sensors 

providing position or direction information, such position can 
be derived by the sensing motion and the sensor's positioning. 

After this procedure, for each object, all its detections are 
identified per capture and per sensor. This list is used by the 
next process, along with the position of the sensor at each 
measurement to identify the three-dimensional position of the 
object to be geolocated. This step has variable complexity, 
depending on the sensor used. Sensors which measure 
distances facilitates the process, while image sensors as they 
do not generate this information needs to infer it. In both cases, 
these processes will estimate the position and rotation by 
fusing these measurements, obtaining the most accurate 
detection possible. This geolocation process is first carried out 
in local units, calculating the distance from the sensor position 
to the object. Later, it is necessary to apply spatial 
transformation equations to a global measurement, allowing it 
to be entered into any GIS system. It should be noted that the 
measurements of the detected object may not show the full 
geometry of the object. Therefore, if available, it is important 
to use the object context to correctly identify both the position 
and orientation of the object. 

The proposed process has few general components but 
obtaining good results on this problem is not easy. The 
development of each component is complex, and there are 
accurate solutions for each one, but none sufficiently robust to 
be the problem completely solved. Therefore, such systems 
tend to rely on the fusion of well-calibrated and 
complementary sensors to facilitate and enhance each 
individual component. For example, LiDAR cannot easily 
detect an object form, but it knows the distance to the object. 
Alternatively, it is also possible to fuse the results afterwards, 
by performing the complete process for each sensor separately 
and joining them together to obtain a better estimate. 

 

Figure 2 – Object geolocation example  
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IV. 360 IMAGERY BARRIER GEOLOCATION 

A. General description 

Once the general process has been introduced, the 
feasibility of this process is demonstrated by setting specific 
sensors, sensing type and target to be geolocated. This 
experiment aims to extract the position and orientation of 
temporary traffic barriers using a 360-degree video dataset at 
a street-level view. 

The motive of this experiment is the study and feasibility 
of translating real-world objects into a three-dimensional 
representation, recreating reality as faithfully as possible. 
Such 3D environments will be used by the drone research 
branch of the research group, where they first develop in a 
simulator and then apply IA techniques on real UAVs. The 
more realistic the simulator and test scenario are, the better AI 
and results will be in the real world. 

The dataset used is nuScenes[18]. Composed of detections 
from several sensors mounted on a vehicle, this is widely used 
by researchers for the planning and control of autonomous 
vehicles. Specifically, it has six cameras that form a 360+ 
image of the vehicle, five radars around the vehicle and a 3D 
LiDAR. In addition, it has GPS, IMU, etc. for accurate 
positioning and orientation of the car. In addition to raw 
detections, it has pre-processed information and useful 
algorithms to facilitate research tasks, such as object 
detections and object classifications across the sensors, or 
their precise three-dimensional positioning and orientation. 
An example of the dataset information is shown in Figure 3. 

 
Figure 3 – nuScenes 3D LiDAR and camera detections 

 
The dataset provides 23 different object types classified, 

some static such as the barrier to be detected, but most of them 
are dynamic, such as people or vehicles. In total, it has 1.4 
million images, but for practicality as the aim is to validate 
that the process works, an available and reduced version of the 
dataset is used. 

This experiment uses only 360 imageries to estimate the 
position and orientation of the object. The goal is to validate 
the feasibility of the project at a low cost, and to be able to 
replicate it in other environments. However, this dataset is still 
useful for this work, as it allows to compare the estimated 
position and orientation with their calculated ground truth 
using the 3D LiDAR. This enables the process and the system 
validation, so that metrics can be gathered to decide whether 
this process is valid under different scenarios. 

B. Geolocation estimation 

The implemented image-based geolocation component is 
exclusively based on the triangulation of different 
snapshots[19]. It is inspired by Zhang's work[10] with Line of 
Bearing (LOB) and has been extended to detect volumetric 
objects and their orientation rather than simple points on the 
map. The present work also establishes some criteria for 
finding the best possible geolocation, discarding noisy inputs. 

The dataset used provides the precise georeferenced 
position and orientation of the car and its sensors at each 
snapshot, as well as the sensors intrinsic features. By having 
this information available, such as the field of view (FOV), it 
is possible to specify the area that each sensor covers in each 
sensing on a map.  

In addition, the resolution of the camera is known. 
Specifically, it is 1600 pixels in width and 900 pixels in height. 
These 1600 pixels are within the camera's horizontal field of 
view, being endless long vertical planes gathering RGB data. 
These planes can be easily visualised in the well-known bird's 
eye view (BEV), as it is in Figure 4, drawing with a top view 
the car (the line represents the car’s orientation), its sensors, 
the sensor's FOV with a triangle, and the lines representing the 
infinite plane. 

On the other hand, we have the barrier detections, which 
are represented in each snapshot with a rectangular bounding-
box that frames the object. These bounding boxes can be used 
to identify from these 1600 vertical planes the ones that 
correspond to the orientation detected by the barrier. In 
particular, the proposed algorithm selects three planes: the 
central plane of the bounding-box, used to accurately locate 
the centre of the object, and the two sides of the bounding-
box, which are used to find the orientation of the object. In 
Figure 4 these three planes are drawn: the left ones in blue, 
centre in green and right in red. 

Specifically, for each detection and zone of the object to 
be positioned, the process performs:  

1. The vertical plane on the image is obtained for the area of 
the object to be positioned, called ��������	
� . 

2. With it, the difference in angle with respect to the image 
centre is obtained, by knowing the FOV of the camera. 

3. This direction value is transformed to the relative 
coordinates, by knowing the position and orientation of 
both the car and the sensor, and therefore the object's 
direction can be obtained. 

������������
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���� =

���
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����� �!"#
· ��������	
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The planes delimit the area where the object is located, but 
they are not able to estimate the distance of the object from the 
camera, so they cannot locate it with a single image. By 
exploiting all the snapshots that detect the same object, it is 
possible to estimate the distance to the object. Applying the 
same process with each detection, N lines representing the 
same object are generated. To calculate the intersection ,-, /0 
of two lines   and �  described as �- + �/ + � = 0  the 
following equation is used: 
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By generating the intersections of these lines, 3 · ,3 − 10 25  

position estimations of the object are obtained. The same 
process applies to the lines on each side of the bounding-box, 
finding intersections that represent each side. Using these 
intersections, centroids can be calculated and taken as a good 
estimate of each of the zones: centre and both sides. The 
estimate of the object is placed centred on the central centroid, 
while the orientation of the barrier can be calculated 
trigonometrically using the line that joins the two sides. 

As each barrier has fixed dimensions, it can be drawn 
correctly in the BEV view. The true barrier can also be drawn 
to compare the result of the process and determine how good 
the process is. As shown in Figure 4 example, they are 
identical in position and slightly different in orientation. 

 
Figure 4 – Triangulation illustration process 

 
This example’s estimation is almost perfect, with multiple 

detections really close and covering it well. Nevertheless, A 
further analysis is necessary to assess whether this process is 
accurate enough in all scenarios. Therefore, the following 
dataset information and generated metrics are extracted from 
all detections of the mini dataset introduced above. 

For each object, by comparing the estimated object with 
the real object detected by the 3D LiDAR: 

- The yaw angle error in degrees. 
- The overlap percentage in BEV view. 
- The error of position of each side and centre. 
 

For each snapshot and bounding box of a barrier: 

- The height, width, and area of the bounding box in 
pixels. 

- The distance from the sensor to the object. 

- For each line of this frame (centre and sides) the 
positional error between the centroid of their 
intersections and the real position. 

 
The used dataset contains 10 different scenes, of which 3 

detect barriers. In total, there are 71 barriers. After applying 
the geolocation process on them, it has been observed that one 
scene is only the car stopped, detecting the barriers several 
times at the same spot. The triangulation algorithm requires 
several snapshots at different locations. For this reason, a 
restriction is added to the triangulation frame input: if the car 
has not moved more than 1 meter from an already selected 
frame, that frame is dropped. This process takes all 16 barriers 
out from the that scenario, thus having a total of 55 unique 
barriers. In addition, to carry out correctly the triangulation 
process, a minimum of 3 frames are required.  

 
Figure 5 – Triangulation example with erroneous intersections 

 
An analysis of the results obtained is carried out. Only 19 

of the 55 overlaps with the real barrier. On average they have 
2.9 metres of error and 27 degrees in orientation with respect 
to the real position. These results show that the process is 
satisfactory, but there are some issues that need to be 
addressed, as in Figure 5. Some intersections have a clear 
centroid, but many others are spread out, some of them into 
infinity and some even on the other side of the car. Both cases 
are detrimental to the centroid obtained and therefore the 
barrier estimation. 

C. Misplaced intersections cleaning 

All these intersections theoretically represent the same 
place, but they are not located in the same position. This gap 
is caused by the imprecision of the cameras, as well as by the 
bounding-box fitting at each frame. The further away the 
sensor is from the object, the fewer pixels it represents, and 
the more uncertainty is introduced to the system by its line. In 
addition, if the object detection process includes more pixels 
than it should, more error is introduced into the process. 
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Therefore, it is necessary to apply a system that 
discriminates between harmful intersections and removes 
them from the process, resulting in better results. In this work 
two potential improvements have been implemented. 

It has been observed that there are intersections whose 
location is outside what the image should see, considering the 
position, orientation and FOV of the sensors capturing that 
object. It does not help to use such intersections, as one of the 
two lines is poorly aligned and generates this noise. Therefore, 
this first improvement calculates the intersection of FOV 
areas, eliminating those intersections from the triangulation 
process that fall outside this area. A representation of this area 
can be seen in Figure 6, Figure 7 and Figure 8. 

This criterion eliminates many bad intersections, although 
in some cases several intersections have been found tending 
to infinity inside this FOV area. These intersections usually 
occur with car lines far away from the object when the object 
cannot be correctly enclosed. The farther away from the 
object, the lower the precision of the image and therefore the 
bounding-box is. These lines produce intersections that are far 
away from each the others, causing the centroid to be 
displaced and the result to be poor. 

  
Figure 6 – Barrier intersections discarded due to FOV intersection 

 
To overcome it, several options can be studied to limit 

these intersections. For example, not generating intersections 
between almost parallel lines, restricting further the lines to be 
used by the position of the car or by using only snapshots with 
bounding-boxes large enough implying that the sensor is 
closer to the object. The available GIS context could also be 
used to reduce intersections to only valid locations, 
eliminating those at buildings or other roads that are occluded 
from view. 

 
Figure 7 – Figure 6 zoomed in FOV intersection 

 

 
Figure 8 – Complex barrier estimation 

 
Alternatively, the implemented approach eliminates the 

intersections that are considered outliers in relation to the 
centroid generated by all the intersections. After calculating 
the distance of each intersection to the centroid, the 
interquartile range and quartiles are extracted, eliminating the 
noisy intersections through a statistical analysis. Those whose 
distance is below Q1-1.5IQR or above Q3+1.5IQR are 
discarded. With the remaining intersections a new centroid is 
calculated which should be more accurate. With this 
improvement another metric can be calculated, the percentage 
of intersections discarded as outlier. 

Both processes are complementary to each other, first by 
obtaining the intersections within the FOV, and then by the 
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outlier’s elimination. It is to be expected that as more and more 
criteria are applied to resolve found issues, the better the 
results will be. 

Even with these improvements, there are complex cases, 
as shown in Figure 8. In this case, both the FOV and the outlier 
detection do their job, but because all the shots are from the 
same orientation, with the car moving away from the object, 
there is no correct intersection, thus the triangulation does not 
estimate the position correctly. 

D. Metrics and results 

Using the metrics introduced above, several experiments 
are carried out with the 55 barriers available. Specifically, the 
original test with all intersections (All), and two further tests, 
one for each proposed improvement (NoOut and FOV). Also, 
both improvements together are tested (FOVNoOut). 

Figure 9, Figure 10 and Figure 11 show the main metrics 
calculated, represented with a boxplot diagram, showing 
quartiles, interquartile range, and outliers. With dashed lines 
the mean and standard deviation are shown too. Specifically, 
these show the difference in positioning error, from the centre 
and on both sides, the percentage of overlap with the real 
barrier and the error in barrier orientation, respectively. 

It is more than evident that the results after intersection 
cleaning improve in all metrics, obtaining a more than 
reasonable accuracy for any further use. 

 
Figure 9 – Position estimation error (meters) 

 

 
Figure 10 – Overlap percentage with real barrier 

 

 
Figure 11 – Yaw orientation error in degrees 

 

 
Figure 12 – Estimated barriers in a GIS system 

 
Figure 12 shows the result of switching all detections to a 

GIS system. Comparing the true barriers with the original and 
improved estimations, the effects discussed in the previous 
metrics are observed. By having all the barriers at once, the 
barriers closer to the vehicle trajectory are significantly better 
placed, while those further away are a bit more scattered, 
although they are still good enough to be a fully automatic 
solution. Still, in some cases the barriers do miss, requiring 
slight manual adjustment for more precise applications. 

V. CONCLUSIONS AND PERSPECTIVES 

Quality GIS datasets are important for multiple 
applications and decision-making. This paper proposes a 
process to obtain them automatically for any type of sensor 
and detection. Furthermore, its feasibility is tested by a 
specific example that detects traffic barriers through 360º 
imaging. Although the process achieves decent results, there 
is scope for improvement, either with this approach, 
developing new ways to clean up noisy intersections, or by 
exploring other imaging methods. 

This work sets a base line of research to be continued in 
future works. On the one hand, the feasibility of the process 
should be tested through other types of sensors, such as 
LiDAR. Also, whether it improves by fusing several sensors. 
In addition, it is necessary to explore the process operation 
from other perspectives as well as dealing with the third 
dimension, for example from an aerial shot of a UAV. On the 
other hand, the complete implementation of the system is of 
interest, including the creation of an own dataset, as well as 
the detection, association and position estimation of different 
objects close to our environment. 

Finally, it is necessary to exploit this generated 
information. For example, by generating the above-mentioned 
3D environments that represent the real world more 
accurately. To illustrate the capabilities enabled by this 
process, Figure 13 shows a comparison between a dataset 
snapshot and a simulator-generated one using the 
georeferenced information extracted with this process. It has 
been created using the AirSim drone simulator[20], based on 
Unreal Engine, and the barriers are automatically placed by 
the Cesium plugin[21] by means of its latitude and longitude. 
In addition, a 3D reconstruction of the environment generated 
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with photogrammetry is used to provide a more realistic and 
context-aware environments for our simulated UAV missions.  

 

 

Figure 13 – Comparison between real dataset imagery and a 
reconstructed scenario using the georeferenced barriers 
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