
sensors

Article

Architecture for Trajectory-Based Fishing Ship
Classification with AIS Data

David Sánchez Pedroche * , Daniel Amigo * , Jesús García and José Manuel Molina

Group GIAA, University Carlos III of Madrid, 28270 Madrid, Spain; jgherrer@inf.uc3m.es (J.G.);
molina@ia.uc3m.es (J.M.M.)
* Correspondence: davsanch@inf.uc3m.es (D.S.P.); damigo@inf.uc3m.es (D.A.)

Received: 8 June 2020; Accepted: 3 July 2020; Published: 6 July 2020
����������
�������

Abstract: This paper proposes a data preparation process for managing real-world kinematic data
and detecting fishing vessels. The solution is a binary classification that classifies ship trajectories into
either fishing or non-fishing ships. The data used are characterized by the typical problems found in
classic data mining applications using real-world data, such as noise and inconsistencies. The two
classes are also clearly unbalanced in the data, a problem which is addressed using algorithms that
resample the instances. For classification, a series of features are extracted from spatiotemporal
data that represent the trajectories of the ships, available from sequences of Automatic Identification
System (AIS) reports. These features are proposed for the modelling of ship behavior but, because
they do not contain context-related information, the classification can be applied in other scenarios.
Experimentation shows that the proposed data preparation process is useful for the presented
classification problem. In addition, positive results are obtained using minimal information.

Keywords: AIS data; spatiotemporal data mining; data fusion; machine learning; trajectory
classification; class imbalance; real-world data

1. Introduction

Maritime vigilance is essential to ensure safety and security at sea. Illegal, unreported and
unregulated (IUU) fishing [1] poses a risk to food safety and maritime biodiversity. It has been
estimated that between 11 and 26 million tons of fish are caught annually by these illegal fishing
activities, accounting for approximately 15% of fish consumed globally [2]. To counter this illegal
activity, maritime vigilance systems need the capability to locate vessels inside an area and recognize
fishing ships. Multiple sensors are capable of providing the kinematic information of located objects
to address this localization problem. These sensors can be categorized into two major groups: those
relying on the collaboration of the object using information that is provided by the located ship
(e.g., Automatic Identification System, AIS), and those that only use the information generated by the
sensor (e.g., primary radar). Non-collaborative sensors only provide kinematic information without
ship characteristics, while collaborative sensors, such as the AIS, provide additional information that
could assist ship identification. This additional information, however, is susceptible to manipulation
by the ship owner, resulting in a loss of trust.

This paper proposes ship type identification using only the kinematic information that can be
extracted from any sensor. Furthermore, the proposed process allows classification of objects as either
fishing ships or other types of vessels.

A significant consideration in location and recognition problems is the context of operation and
the usable information related to that context. A simple example is information about the specific
areas in which fishing boats may be commonly found or, in contrast, areas in which fishing ships are
rare. This context information can be a useful tool for an identification system because it can assist
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identification, e.g., it is highly likely that a ship detected in a fishing area is a fishing ship. However,
this improvement in recognition capability also specializes the system to the environment of the
particular context information. As a result, if the context information differs between environments,
it is necessary to develop a different system for each environment.

In addition, the specialization of the system implies that classification of trajectories heavily relies
on the context, to the extent that the context is considered to be more important than ship behavior.
Thus, if a classifier is able to locate all fishing ships inside a specific area, an illegal fishing ship could
easily cheat the system by not entering the modelled area and fishing illegally elsewhere.

As a result of these issues, the approach proposed in this paper does not consider context
information and detects fishing ships using only sensor-extracted kinematics. Notably, the kinematic
data used in the proposed approach does not identify the position of the ship, because this measure
would limit the system to a particular scenario. Thus, using exhaustive data processing, it is possible
to train the classification algorithm to perform ship type detection (i.e., fishing in this paper) with
minimal information; that is, the aim is to achieve classification using the minimum amount of inputs.

The original data used for the process were real-world data without any treatment. In any data
mining problem, problems inherent to the raw data exist, such as [3]:

• Data instances exist that do not provide information to achieve the desired task, presenting
inconsistencies, null values, or extreme values.

• Noisy sensor measurements, which may ruin the results.
• The number of objects (e.g., ships) of each type is not equivalent and, therefore, there is an

imbalance in the data.
• Movements made by different objects (e.g., ships) may differ greatly in terms of both distance and

duration, which implies that they are not comparable to each other.

To solve these problems, the proposed process takes the following steps: First, data cleaning is
undertaken to eliminate information that is inconsistent or incorrect, or otherwise cannot be used
in the subsequent classification process. Second, a state estimation filter is used to smooth the
trajectory of different ships, thus reducing the influence of atypical measures and noisy data. Before
proceeding with classification, since there are clear differences in the sizes of trajectories, it is necessary
to apply segmentation to allow entries to the classification problem to be compared. Finally, once the
preprocessed data are obtained, a class balancing step is necessary due to the significant difference in
the number of ships of different types.

Following data preparation, the inputs and outputs to the classification algorithm must be defined
before the algorithm can be applied. The process output is the defined class (i.e., a fishing ship or
a non-fishing ship). However, different track measurements cannot be used simply as the inputs;
measurements must be translated into the track kinematic values to represent the ship behavior.

The approach proposed in this paper is the systematization of a process that uses different
sub-processes with the objective of achieving a better classification. Thus, the method observes the
relationships of the different sub-processes and analyzes their impact within the final classification.
The results are analyzed from a multi-objective perspective to consider both the success of the
classification in a generalist way, and the resolution of the problem taking into account the
existing imbalance.

The results obtained show that the proposed data preparation process is successful, resulting in
improved classification when the steps of the process are applied. In addition, classification is achieved
using minimal kinematic information.

This paper represents an application of the proposal of [4,5], in which the trajectory classification
problem was considered using multiple inputs with a lower level of preprocessing, and the inputs
were analyzed to identify those useful for classification.



Sensors 2020, 20, 3782 3 of 21

This paper is organized as follows: In Section 2 work related to this problem is discussed.
In Section 3 the proposed process is explained, and in Section 4 the experiments are outlined and results
are shown. Finally, the conclusions and perspectives for future research are presented in Section 5.

2. Related Work

In [4,5] a preliminary study was made of the problem presented in this paper. This study considered
the problem holistically, supporting the non-binary classification of ships, rather than considering only
the detection of a particular type. The main difference from the current proposal is the special focus on
preprocessing to prepare the data.

In the current study, preprocessing was undertaken for the treatment of erroneous variables and to
adapt the approach to the detection of fishing ships. The cleaning undertaken in the current approach
was largely possible due to previous research, based on which data errors were detected, prior to being
corrected during the preprocessing step of this proposal.

Previous studies explored a broader set of variables and differed in their behavioral approach
compared to the current paper. In this study, a number of previously studied variables were discarded,
leaving only those that provided better results, and considering that only non-context information is
desired in the proposed approach.

Previous research also provided information about the configuration of relevant algorithms,
such as the interacting multiple model (IMM) filter, thus allowing the optimal methodology to be
chosen for the current method. In addition, to address issues identified in previous research, particular
consideration is given in the proposed approach to the problem of balancing.

In the development of the approach proposed in this paper, analysis was undertaken of previous
studies of data cleaning and filtering approaches to reduce atypical measurements and smooth
trajectories, the treatment of unbalanced data, and the trajectory classification problem, considering
the different classification algorithms and the feature extraction of ship tracks to represent each ship’s
behavior. The following sections review the literature relevant to each of these issues, in addition to
outlining the approaches used for similar problems.

2.1. Data Preprocessing

Raw data must be prepared for operation within a classifier, so a cleaning process is necessary
to transform the data into a useful input. Specifically, the presented approach transforms a series of
dispersed measures of multiple ships into a series of ordered trajectories.

The Automatic Identification System (AIS) [6] is mandated to be fitted to most maritime vehicles
by the International Maritime Organization (IMO) [7]. In this study, AIS data was chosen because it is
widely used in the literature and freely available, in contrast to other sensors. AIS data can differ between
the type of transponder (class A or B) and messages can contain different information, however, the data
contains kinematic information (timestamp, GPS measurements in WGS-84 coordinates, an orientation
in relation to north and speed) and static information about the ship, such as ship name, ship dimensions,
maneuver, ship type, and Maritime Mobile Service Identity (MMSI). The possible values of ship type
are shown in Table 1.

Table 1. Ship types provided by the Automatic Identification System (AIS).

Anti-pollution Cargo Dredging
Fishing HSC Pilot

Port tender Military Passenger
Law enforcement Pleasure Medical

Reserved Sailing SAR
Tanker Towing Tug
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Nevertheless, due to problems with this information resource [8], preprocessing is necessary to
treat possible inconsistencies, null values, and noise. No algorithms exist to treat data inconsistencies
and null values, thus, the most effective solution is to analyze the data and the underlying problem.

However, to address track noise generated by kinematic AIS data over time, so-called state
estimation algorithms exist in the field of data fusion. Using a probability approach, these algorithms
can increase confidence in the measurements and minimize the impact of noise from sensors [9].
For AIS, the state is presented in terms of latitude and longitude, measured by a GPS device inside
the ship.

The Kalman filter (KF) [10] is a well-known state estimation filter, although its extended version
(EKF) is more suitable to a non-linear problem, such as that proposed [11]. Unlike the KF, the EKF
is not optimal; however, research into particle filters [12] or adaptive filters has aimed to solve this
problem. For the process proposed in this paper, the interacting multiple model (IMM) filter [13] was
selected for being a solid solution to this problem [14].

2.2. Data Imbalance

Because of its impact in multiple areas and existence in reality, class imbalance is an extensively
researched problem in the field of data mining. Multiple approaches have been proposed as solutions,
which be divided into methods using oversampling and undersampling to resample (add or remove
data-level instances) [15,16], and those that use specific algorithms that consider the imbalance in the
classification process [17,18].

In addition, hybrid approaches exist that combine several of these techniques in a single solution.
Due to their proven effectivity, relatively low computational cost, and simple implementation,

two of the best known and most used at the data level are:

• Random undersampling: This technique is a simple solution that reduces the instances of the
majority class by randomly deleting instances [19]. Its major drawback is the possibility of
excluding useful data.

• Synthetic Minority Over-sampling Technique (SMOTE): The efficiency of this widely known
oversampling technique has been proven in different imbalance problems; it creates new instances
at a random point along the line segment that joins two neighbors (calculated by the k-nearest
neighbors algorithm) of the original instances [20].

In classification problems, the main algorithm performance evaluation metric is the success rate,
also known as accuracy, which is the ratio of the correctly classified instances to the total instances of
the test set. This metric is not enough to measure the results in an imbalanced dataset since it does not
consider the entire problem.

The imbalance problem is demonstrated in the example confusion matrix presented in Table 2.
In this example, the negative class clearly reveals significantly more instances than the positive class.
This implies an 85% success rate, but also achieves a poor result in the positive class classification,
as most instances are classified to the negative class.

Table 2. Confusion matrix example.

Predicted as Positive Predicted as Negative

Positive Class TP = 1234 FN = 4989
Negative Class FP = 361 TN = 28,730

From the confusion matrix, it is possible to obtain other metrics to evaluate specific parts of the
classification, such as sensitivity or precision. The F-measure is a widely used metric that combines
sensitivity and precision for analyzing the positive class [16,19], providing more specific information
than the accuracy, but in exchange losing the overall view of the classification results. For example,
in the previous confusion matrix, the F-measure is approximately 32%, which indicates poor positive
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class classification even though the accuracy was good. Therefore, in order to evaluate classification in
imbalanced problems, it is necessary to take into consideration both accuracy and the F-measure (or a
similar metric).

Class imbalance is common in datasets used in trajectory classification problems, but a small
number of authors, such as [21], have used SMOTE and emphasized solving the problem using
the resample algorithms that aid classification. In contrast, other papers [4,22–24] argue that the
classification is valid by analyzing the results or the metrics.

2.3. Classification Problem

Multiple algorithms exist that enable the prediction of a class using a set of input variables.
The most common groups of techniques are logic based, perceptron based, statistic learning based,
and the Support Vector Machine (SVM) [3]. Many of these algorithms can generate good results. In this
study, SVM and decision trees were selected, as the examined problem involves a binary classification
to predict when a boat is a fishing ship or a non-fishing ship.

In addition to the classification results, the decision tree algorithm also provides an understanding
of the use of the input data via analysis of the tree decision nodes. Using a predictor importance
function, it is possible to estimate the relevance in the classification of each input [25].

In the literature, several approaches exist to address problems similar to those outlined in this
article. These can be grouped by the source of information they use. Those that use images to detect
the type of ship, including Synthetic Aperture Radar (SAR) [26,27] or photographs [28], use a different
approach based on analysis of the pixels of static images. Comparative (terrain reference) navigation
represents an approach similar to the use of images to explore the environment, although it does not
require a satellite; in [29] the use of 3D multibeam sonar data is explored. Other approaches use sensor
trajectories, such as AIS or RADAR.

The authors of [24] extract both kinematic and context-specific information from each trajectory
to classify the type of ship. These geographical characteristics, such as the distance to the coast or
clustering of areas in which the main ship type is defined, are useful for the classification problem.
However, this approach, and that used in ref. [30], is not used in this paper. Ship characteristics extracted
from the AIS data, such as dimensions, represent context information that is not specific to a given
scenario, so meet one criterion for use in the proposed method. However, because this information
is not available from a range of sensor types, this data source does not satisfy our requirement for a
system that is usable with any sensor that provides kinematic information. These two solutions also
differ in the use of full trajectories (by compressing the data prior to the classification stage), compared
to the proposal of this paper in which the classification uses segments of the trajectory to introduce
equivalent information fragments.

In [31], the trajectory is divided and features are extracted according to kinematics only.
This approach was also used by the authors of [22] without dividing the trajectory, using a multivariate
time series classifier as a specific algorithm for time series. Both of these papers were tested with
a specific dataset; the first was of fishing and cargo vessels in a limited area, and the second was
a small dataset with highly unbalanced classes and used a boosting classifier with the objective of
maximizing the accuracy by learning the models of the classes. In [32], the authors explored the
problem of classification using neural networks. However, this approach used positional data, which
were not considered for the current proposal. Another similar approach was presented in [33], which
used a random forest to classify different trajectories in two dimensions, instead of boat trajectories.

Another type of target was classified in [34–36], in which airplanes or land vehicles, rather than
ships, were classified using characteristics extracted from trajectories.

3. Proposed Architecture

The proposed architecture, as shown in Figure 1, uses a AIS dataset of measurements that represent
ship trajectories. The first step in the preparation of the trajectories is to clean the data by removing
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inconsistencies, and null and incorrect values. The second step is to use the IMM filter to smooth the
trajectories, thus reducing the impact of noisy data. The segmentation step divides the trajectories
into equal size segments for comparability in the classification. Prior to classification, a further step
is required to address the issue of data imbalance. The features extraction step models the behavior
of each ship from its trajectory kinematics before the final step, in which the classification algorithm
is applied and results analyzed. The following sections summarize each of the main steps of the
proposed process.Sensors 2020, 20, x FOR PEER REVIEW 6 of 21 
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Figure 1. Architecture scheme. The code of the proposed architecture is publicly accessible at GitHub
(https://github.com/DanielAmigo/trajectory-based-ship-classification).

3.1. Data Source

The data source must be a set of kinematic information extracted from the measurements of one
or more sensors and with a class indicating if the instance is from a fishing ship. The chosen resource
is AIS data because its ship type record can be used to identify if the measurement is provided by a
fishing ship, and due to the high availability of this data source.

The selected AIS data is a repository provided by the Danish Maritime Authority [37], and is a
recompilation of millions of AIS contacts off the coast of Denmark since 2006. Divided into daily files
of approximately 1.8 GB, the data represents a practically unlimited amount of information, and is
thus sufficient to generate an input dataset for the study objective. The data contains the Maritime
Mobile Service Identity (MMSI), which makes it possible to distinguish ship trajectories, and the ship
type value, which allows extraction of a class for training the classification algorithm.

3.2. Data Cleaning

The data cleaning process begins by dividing the data into trajectories to identify possible
inconsistencies. MMSI, the ship identifier provided with the AIS data, is used to divide the trajectories.
In this division, the algorithm makes an initial noise reduction based on the limitation of each trajectory.
The limitations are applied over the time gap between track measurements and over the minimum
trajectory size. The slowest AIS refresh rate on a moving ship is 10 s [38], thus, the time gap limitation

https://github.com/DanielAmigo/trajectory-based-ship-classification
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assumes that the track measurements must be separated by no more than 11 s, allowing for a minimum
delay between transmitter and receiver.

To ensure sufficient information for the classification stage, the process limits the minimum track
size to 50 measurements. This limit was chosen for its best results among those tested, and is the
minimum size for a trajectory belonging to a ship that contains enough information. Figure 2b shows
a noisy track in which the AIS data transmission rate is not achieved, and therefore, some of its
measurements cannot be used for the filtering algorithm.

After track division, the cleaning process removes inconsistencies and null or wrong values.
The first step in this process is to locate high offsets in the WGS-84 coordinates of the measurements.
Figure 2a shows an example of an extreme noise value that is deleted from the dataset. In addition,
tracks that does not contain the ship type or those that do not correspond to a ship (the set includes
measurements from ground stations) are removed from the dataset.
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Because the AIS data provides a maneuver value, it is possible to find inconsistencies in the
data such as non-maneuvering trajectories that indicate movements within the measurements. These
inconsistencies imply a wrong value in the AIS transmitter that could involve other incorrect data
points, thus the process removes those inconsistences from the dataset. Trajectories that do not show
motion are also removed because they are not useful for the proposed problem, which uses trajectory
kinematics to perform classification.

3.3. Data Filtering

To reduce the impact of measurement noise, the IMM filtering algorithm is applied to smooth
the trajectories, thus resulting in more robust kinematic ship information. The IMM filter can be
configured by modifying the different models of prediction (linear movement, turns, acceleration,
etc.) and the switch probabilities between modes. The system proposed in this paper is concerned
with ship movements and therefore is modeled using two modes: the first mode models all of the
linear movements, and the second models all of the noisy movements (acceleration, deceleration, or
curvilinear movements); thus, the second movement mode represents all of the movements that differ
from linear movement.

To implement the prediction equations of each mode, the algorithm uses an EKF, and the second
mode is more sensitive to this measure. The measure error is set to 10 m, which is the average noise of
a GPS sensor [39].

In the selection of the prediction mode as part of the filter configuration, it is possible to modify
the switch probabilities between modes, thus making the filter more robust or sensitive to variation
in linear movements. This parameter must be set as a compromise between noise robustness and
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the detection of maneuvers; although it is important to detect maneuvers due to ship acceleration or
course variations, it is also necessary that noise measurements are not mistaken for maneuvers.

3.4. Trajectories Segmentation

The classification algorithm requires comparable inputs to obtain positive results, but the
trajectories obtained after the preprocessing step have large size differences, meaning that the quantity
of information could differ significantly, thus preventing their comparison.

To solve this problem, the proposed approach identifies cutting points in the trajectories that can
be used to generate smaller fragments; that is, sub-trajectories are used to represent the main trajectory.
This is achieved using a uniform sampling algorithm which makes segments of a fixed size, meaning
that the sub-trajectories result from cuts made at a constant increment. In previous studies, the measure
of 50 AIS plots was used for this division. Thus, this measure was also used in current study, with the
aim making comparisons between the different balancing techniques evaluated in this paper.

3.5. Data Imbalance Treatment

The dataset contains a clear class imbalance that must be resolved prior to classification as it could
distort the results. This imbalance problem arises from the difference in the numbers of each type of
ship in the dataset, with cargo ships having the most instances in the dataset.

This problem is resolved using an algorithm prior to the classification stage. Experimentation was
conducted to examine how the selection of this algorithm affects the classification results.

The two algorithms chosen to solve the imbalance problem are explained in Section 2: random
undersampling and SMOTE. In both cases, the objective of the balancing solution is to generate a
dataset in which 50% of the instances are fishing ships, and the other 50% are non-fishing ships. In the
case of random undersampling, entries of non-fishing vessels are removed randomly, regardless of the
ship type. In SMOTE, fishing instances are created, until a threshold of 50% of the dataset is reached.

The classification success of the solution to the data imbalance problem is measured with the
accuracy metric and the F-measure with σ = 1.

3.6. Classification

3.6.1. Feature Extraction

To classify the trajectories, features are extracted from the tracks that enable ship behavior to be
modeled without considering its context of operation. The proposed approach identifies kinematic
variables that represent this behavior without considering the position of the target, since it is assumed
that the behavior of the ship should be the same in any operating environment. Thus, it is intended
that the classification algorithm does not learn from elements specific to the situation.

The kinematic values relevant to the presented problem were chosen based on the study in [24],
which presents a set of variables that model ship behavior. Specifically, variables can be identified that
are related to:

• The course variation: to describe the travel direction and changes in direction.
• The distance: to characterize the trajectory’s range and complexity.
• The speed: using the vector norm and the variation of each point to describe the different

speed properties.

In addition to the features proposed in [24], new variables were considered to be useful and were
thus added:

• The time between measures: to consider the time gap between the track measures.
• The total time of the segment: as a support variable for the time between measures, considering

the total time of the segment, rather than only the measurement time gaps.



Sensors 2020, 20, 3782 9 of 21

Statistical variables, such as the average or the maximum, in addition to ratios, can be useful
to summarize information about the overall trajectory. However, additional statistical variables are
used to provide more information about the segments; in addition to the mean and the maximum,
the proposed approach also uses the mode, minimum, standard deviation, and three quartiles. Finally,
variables with additional information, such as ship class, maneuver type, and ship dimensions, are also
included. The final feature array is shown in Figure 3. This array provides the classifier with a total of
44 input variables.Sensors 2020, 20, x FOR PEER REVIEW 9 of 21 
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Figure 3. Array of kinematic features for classification.

3.6.2. Classification Algorithm

The classification is applied to a binary class problem to predict if a tracked ship is a fishing ship.
Thus, the algorithms proposed for this approach were selected because of their ability to operate on
binary problems, in addition to their demonstrated results and the simple interpretation of their output.

For classification, the training and validation datasets were divided 70:30, ensuring the
representation of each ship type by dividing each of the types separately.

The first chosen algorithm is a decision tree that uses the inputs to separate the instances in each
tree node. Separations are made using a binary logic rule that divides the instances into two groups
according to the variable value. By comparison, the SVM is an algorithm that generates a hyperplane
with one dimension for each of the input variables used for the classification, thereby dividing the
instances into two different sets, namely, “fishing boats” and “non-fishing boats”. These algorithms
are among the most widely used in related previous research, with good results shown in trajectory
classification problems.

Decision trees also allow analysis of the importance of different input variables in the decision
process using the predictor importance function of MATLAB [25]. This makes it possible to evaluate
the usefulness of the input variables to the classification and, conversely, to identify those variables
that can be ignored to achieve a classification with minimal information.

4. Experiments and Results

In this section, the experimentation carried out for the present study is shown. Firstly, an example
of the overall process is shown in which each of the phases is explained. Secondly, an explanation of the
different experiments carried out is included, as well as the analysis of the results of these experiments.
The final section presents a predictor importance analysis for the obtained results.

4.1. Ilustrative Example

To illustrate the overall process, each phase is shown in detail. Starting from the original dataset,
the process at each phase is applied, and the result is shown with a summary of the remaining
information at each step.

The process began with a dataset spanning three days, in which there were contacts of multiple
vessels without any treatment, sorted by date, as shown in Figure 3. The first step was to separate
the data according to the MMSI, generating tracks for each of the ships. In Figure 4a, this step is
combined with data cleaning, in which trajectories are removed whose information is not sufficient for
the following process.



Sensors 2020, 20, 3782 10 of 21

An overview of the data distribution after this cleaning process is shown Figures 4b and 5.
As shown, after the process, 22% of the almost 30 million AIS contacts were stored. The main focus
of cleaning is on non-consecutive data contacts. This shows that real-world data is not close to the
AIS standard, which is possibly a serious problem. With this strict decision, better filtered tracks were
available and the final dataset was sufficiently large. Nonetheless, 24% of the original contacts did not
have the minimum information to make this classification, indicating that, although AIS is a standard,
it contains numerous gaps and inconsistencies.Sensors 2020, 20, x FOR PEER REVIEW 10 of 21 
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Figure 5. Distribution of contacts.

Finally, there were just over 7 million AIS contacts, divided into 39,077 tracks with the desired
characteristics. From this set of vessels, the ship with MMSI 205451000 was selected to illustrate the
following steps. This ship is a cargo ship and analysis of its data shows that it repeated the same
trajectory. During the cleaning process, this vessel’s contacts were divided into 18 tracks, as shown in
the example in Figure 6a.
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Figure 6. (a) Cleaning process of the example ship; (b) Selected track example.

The next step was the filter that reduced the noise of each of the ship tracks. Then, the segmentation
divided the trajectories into comparable segments and their statistical information was extracted from
each segment for classification.

The image shown in Figure 6b represents an example track of the selected vessel, entering the
port, while the graphics shown in Figure 7 represent the different features extracted for that track,
in addition to total time. In the figure, the different segments generated are also represented.
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Figure 7 shows that the target is affected by speed variations (accelerations and decelerations)
when performing a turning maneuver. The figure can also show changes in travel distance or clear
changes in direction. Notable, the ship also satisfies the AIS requirements, transmitting more frequently
when turning, thus reducing the time intervals.

This track generated four different segments. The feature segments entered the classifier, resulting
in a total of 118,283 segments to classify across all of the used instances. To understand the final input
data of the classifier, Figure 8 shows the distribution of the values of the class to be classified, i.e.,
ship type, throughout the process. The “minimal” class was created for the figure by summing the
classes with fewer than 25 different MMSIs in each.

Figure 8 shows, in addition to the imbalance problem, the percentage differences of the ship types
after cleaning. This is due to many factors: the quality difference of the AIS transponders, breaking of
the 11 s time gap, and the trajectory of the vessel itself, which may be stopped for more or less time.
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It can also be observed that this segmentation generates more segments if the trajectory is long,
which can be a long-term problem if there are ships with many segments. In turn, this may condition the
classification of that ship type to the movement of that particular ship, which may not be representative
of the class.

4.2. Proposed Experimentation

In this paper, a process of data preparation is proposed with the aim of achieving a ship type
classification using only kinematic information about the ship. To test this process, experimentation must
evaluate the usefulness of each of the process phases (i.e., cleaning, filtering, imbalance management,
track segmentation, and classification) to identify those that contribute a substantial improvement in
the classification results. To test the proposed process, experiments were carried out on each of the
phases to demonstrate their usefulness.

Data cleaning: Data preparation begins with the cleaning step, which eliminates typical data
mining problems. It is not possible to test cleaning using the original dataset directly in the filtering
phase, because elements exist within the dataset that obstruct the operation of future algorithms.
Therefore, basic cleaning of the essential elements of the process is required. The sub-processes that do
not need to be subjected to the general cleaning process are the data limitations, the extreme noise data
removal, and the motionless tracks removal. In addition, it is necessary to eliminate null classes and
inconsistencies in the data.

Data filtering: The filtering process that reduces noise within the tracks may not be applied when
directly passing the intermediate dataset of “Cleaned but noisy tracks” to the data segmentation process.

Data segmentation: The track segmentation may not be applied by entering the IMM filter result
into the “preprocessed segments” dataset, passing each entire trajectory as a segment.
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Data imbalance problem: One of the main features of this paper is the use of data that represent
a clear imbalance between classes, thus prompting the use of rebalancing algorithms to modify the
dataset. Notably, many previous studies did not take this problem into consideration or avoided it by
using very small datasets.

One of the proposed balancing algorithms (random undersampling or SMOTE) can be applied to
the “segment features” dataset. Three datasets can be classified: one in which no balancing algorithm
has been applied, and one for each of the algorithms.

From these variations a set of experiments was generated which were grouped into different
settings according to the objective; the specific configuration of each of the settings is shown in
Table 3, where the symbol X indicates the sub-process was carried out, and the – symbol indicates
the sub-process was not carried out. In addition, more tests were performed with the balancing and
classification sub-processes because of their importance within the proposed approach. This implies
that each type of experiment generated results from all of the possible combinations for the balanced
dataset and the classification algorithm; these are marked with the symbol � within the table and with
the total number of experiments is indicated in the last row.

The “complete process” setting represents the experiments carried out using the proposed process
outlined in this article. The objective of these experiments was to test the different configurations of
class balancing and the classification of trajectories in the dataset prepared by the proposed process.
The remainder of the experiments also tested the class-balancing and classification configurations,
although their final objective was to evaluate the different phases of the process. The “no cleaning”
setting evaluated the cleaning step in the proposed process, “no filtering” evaluated the use of a
filtering algorithm, and the “no segmentation” setting evaluated the track segmentation step.

Table 3. Experiments types included subprocess.

Process Subprocess Complete
Process

No
Cleaning

No
Filtering

No
Segmentation

Cleaning Full cleaning process X - X X
Only minimum necessary

cleaning - X - -

Filtering Filtered dataset X X - X
Non filtered dataset - - X -

Segmentation Segments dataset X X X -
Full tracks dataset - - - X

Imbalance
management

No algorithm � � � �
Random undersampling � � � �

SMOTE � � � �

Classification
Decision trees � � � �

SVM � � � �
Predictor importance analysis Yes No No No

Total experiments 12 6 6 6

The final results of this experiment allowed analysis of the different phases of the proposed
process. In addition, within the analysis a further study was carried out on the importance of the
classifier inputs; thus, it was possible to study the ability of the extracted features to detect fishing
ships using minimal information.

To evaluate the classification problem using balanced data, the accuracy metric and F measure
were used. The first metric measured the overall results of the classification, while the second was
applied specifically to the minority class to measure the specific results of its classification.

The importance of each variable during classification was measured using the predictor importance
calculated in MATLAB with the results of the decision tree classification, thereby obtaining an
approximation of the variables that best divide each dataset. This evaluation, as shown in the table,
was applied over the complete process setting, and new experiments were added to check that the
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variables marked as important genuinely provided most of the class division information. Thus,
it was necessary to undertake a second evaluation of a classification that uses only the selected
input parameters.

4.3. Experimentation Results

Class imbalance generates a multi-objective problem, within which the solutions do not satisfy
the accuracy metric and the F-measure simultaneously; one of the metrics is usually favored over the
other. This, it is important to note that there is no optimal solution to the problem. Figure 9 shows a
diagram in which all of the proposed experiments are plotted using the two metrics as coordinate axes.
Thus, several points showing good results can be observed, although none stands out clearly from
the rest. Although there is no clear winner, the best solutions represent a compromise between both
metrics and were mostly derived from the complete process setting.
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The following figures present the success of the classification approaches with the different tested
algorithms. The bars show the metrics used for the performance evaluation, namely, accuracy in blue
and F-measure in red, whereas each row shows the approximation to the imbalance problem. The first
rows show the results from the SMOTE algorithm, the second show random undersampling results,
and third show the results from classification with an unbalanced dataset.

Figure 10a shows the decision tree algorithm results; the accuracy value was decreased with the
resampling algorithms, as expected, and an improvement in the F-measure. The F-measure was not
high because the decision tree algorithm is not a discriminative algorithm that generates a large number
of false positives or false negatives (which are the results that reduce the F-measure by affecting the
sensitivity and the precision).
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To test these conclusions, Figure 12a,b show the results of a classification made only with these 
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Figure 12. (a) Decision tree results with reduced inputs; (b) SVM results with reduced inputs. 

Figure 10. (a) Complete process decision tree results; (b) Complete process Support Vector Machine
(SVM) results.

Figure 10b shows that the SVM obtained a similar accuracy, although it shows more discrimination
with an F-measure of 0 for the imbalanced dataset. This is a poor result for the proposed approach as
it means that almost all fishing ships were classified as non-fishing. Although accuracy was slightly
lower, the improvement provided by the balancing algorithms can be seen in the F-measure, not only
because of the major increase, but also because of the improved values.

Using the classification generated by the decision trees, the importance of the different used
predictors can be considered and the importance of each input can be evaluated. Figure 11a shows that
the minimum and mode statistics are barely relevant in the classification, whereas the most useful
kinematics are the speed, total time, and course variation, as seen in Figure 11b.
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To test these conclusions, Figure 12a,b show the results of a classification made only with these
kinematics and all of the statistics except the minimum and the mode. These reduced inputs results
are similar to those of the complete process, which implies that it is possible to achieve fishing
ship classification using only three kinematic values, although other kinematics can be useful in
different problems.
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Of the three tested settings, the cleaning process shows the greatest variation from the complete
process results. This result shows that cleaning is an important process within the proposed approach,
because comparing results of a complete cleaning and a minimum cleaning shows a worsening in all
of the experiments using the latter, independently of the classifier or the balancing algorithm used.

As seen in Figure 13a,b, accuracy is the most affected measure by the change to a minimum
cleaning. The balanced datasets were most affected because the algorithms that generate these sets
depend on the quality of the data.

The filtering process in Figure 14a,b shows similar results to those obtained by the complete
process for the imbalanced dataset, maintaining the classification made for the majority class. However,
for the balanced datasets, a worsening can be noted. This is again due to the quality of data used in the
balancing algorithms because the filtered tracks include less noise than the unfiltered tracks.

Non-segmentation in Figure 15a,b generally also yielded similar results to the complete process,
although these results were still worse for the less comparable classification inputs. This can be seen
particularly in the SVM classifier or in the use of the SMOTE algorithm.
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It is important to note that although the three types of experiments show a worsening for the
two types of tested classifiers; it can be seen that the SVM results are affected more than those of the
decision trees, showing results that are usually worse even though the yielded better results in the
complete process experiment.

As a summary of the results obtained from the experimentation, the following conclusions can be
obtained:

• With the complete process, the SVM yields better results with the balanced datasets, and resulted
in the best results.

• The cleaning step is the most significant phase due to the worsening of results in its
non-realization setting.

• Not filtering affects the SVM and balanced sets results in particular.
• Non-segmentation particularly affects the results when SMOTE is used for balancing.
• In all of the settings with an imbalanced dataset, the decision trees algorithm provides better

results than the SVM, since its F-measure is less reduced.
• In terms of accuracy, the imbalanced SVM obtains the best results, although, in return, the low

values of the F-measure indicate poor fishing ship detection.

4.4. K-Fold Validation

Finally, to validate the accuracy of the obtained results, k-fold cross validation can be used over the
best results. Since the problem presents a multiple objective between the F-measure and the accuracy
metric, the best results for evaluation were those on the Pareto front highlighted with the blue line in
Figure 16.
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For the result to be valid, the balancing algorithm must not be applied to the test data; therefore
the k-fold algorithm generated 10 divisions, and iteratively chose nine as the training set on which the
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balancing was applied. In each iteration, the nine divisions had only original data, which means that
no balancing algorithm was applied from previous iterations.

Figure 17 contains a breakdown of the results obtained by the k-fold algorithm. For each experiment
the figure shows the 10 individual k-fold runs (green and red thin columns). The average of these runs
is the value of the k-fold run, shown as the blue and red background columns). The figure also shows
the result of the previous 70—30 experimentation (blue and red diamonds).
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Figure 17 shows that performing the evaluation with a random 70:30 split for training and testing
yields results consistent with the evaluation made by K-fold cross validation with k = 10. With this new
form of validation, the conclusions remain unchanged. That is, considering only the accuracy metric,
the best results are derived for unbalanced sets; by comparison, in also considering the F-measure and
following the criteria of the multi-objective problem, balancing acquires greater importance. Finally,
the dataset with reduced inputs continues to obtain the best results in both metrics.

5. Conclusions and Perspectives

The proposed process demonstrates the ability to prepare data for the desired classification of
fishing vessels. This is evident both in the results demonstrated by the complete process experiment
and in those of the other experiments.

All of the conducted experiments demonstrate the usefulness of the different steps of the proposed
process discussed in this article. However, although the process steps prove to be effective, there is
scope for improvement by using more effective algorithms. For example, the segmentation used in the
proposed approach simply generates fragments of a fixed size; it is therefore likely that analyzing the
same problem with fragments of variable sizes would provide more information. Thus, a possible
future improvement is the analysis of alternative algorithms that can provide new approaches to the
problem, improve the existing algorithms, or allow variations of algorithms to be tested.

An element to emphasize is that acceptable results are obtained using minimal information.
The proposed approach achieves classification results that are close to those from the complete process
experiment using only the speed, total time, and course variation kinematics.
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The proposed classification approach could also be improved in the future with the addition of
features extracted from new sources of information, such as satellites or newly developed reliable
sensors. These technologies can provide new information to improve understanding of the context
and, as a result, ease the detection of fishing vessels.
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