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A B S T R A C T   

The paper presents an analysis over eleven trajectory segmentation techniques applied to the study and exper
imentation of ship classification problems based only on kinematic information. Using the experimental 
framework introduced in previous works, it cleans, smooths and extracts trajectories from real-world Automatic 
Identification System (AIS) data. It also applies three balancing solutions to address the lack of an equal dis
tribution among classes. In total, 196 classification experiments have been carried out, which have been pre
sented with a multi-objective analysis to consider the imbalance problem and conflicting metrics (total and 
minority class accuracies). The results show a Pareto front with different viable solutions for the classification 
problem, without a dominant one over the rest. The segments generated in the best experiments (Pareto front) 
are analysed using specific metrics to compare their impact in the classification problem.   

1. Introduction 

Maritime surveillance systems are an essential element for the pro
tection of the seas, ensuring the safety of maritime transport and security 
of citizens. The detection and monitoring of vehicles are a solved 
problem using multiple technologies. In contrast, more specific prob
lems, such as classification of the type of ship or its current manoeuvre 
are far from being a solved problem, which are essential for decision- 
making in maritime surveillance systems. Technologies such as AIS 
provide information that allows the target identification and behaviour 
identification [1]. However, AIS is not totally reliable, as it is manually 
adjusted, and its technology is susceptible to manipulation. 

The problem of this study is the classification of trajectories to obtain 
the type of ship based on kinematics data that model its behaviour. This 
is an extension of a previous study [2–4], where the problem was 
defined and main subprocesses identified. These first approaches 
concluded that it was necessary to specifically analyse the impact of 
each subprocess on the classification. Thus, the objective of this paper is 
to study the impact of segmentation on the final performance, observing 
whether there are benefits compared to the fixed-size segmentation 
initially proposed. To achieve it, more complex segmentation tech
niques, both classical and recent, are studied and analysed, generating 

variable size segments that can better adjust the ships’ motion. 
To move from the sensor measurements to a ship classification, it is 

required a framework that performs different processes on the data. 
Specifically the Ship Type Detection System (STDS hereafter) developed 
and detailed in previous works [2–4]. will be used. As those works 
conclude, it is necessary to perform a specific analysis on the segmen
tation sub-component, the aim of this work. Therefore, that 
sub-component is the only modification of the STDS used here. 

A short overview of the STDS components is presented. The first 
component performs the data preparation. To clean real-world reports, 
an IMM (interacting multiple model) filter is used to reduce the noise by 
smoothing the target trajectory. The next step is the segmentation of 
trajectories, splitting the original track by applying different criteria 
(uniform length, shape or direction preserving…). Later, a process 
handles of the data imbalance as the ship types are not distributed in a 
homogeneous manner (neither in trajectories nor segments). Finally, the 
classification is performed by using different algorithms applied to track 
segments to predict the ship type. Specifically, the objective is to 
determinate the membership in the fishing class, which is the minority 
in the used dataset. Before applying the classification component, the 
feature extraction sub-component extracts representative features from 
each trajectory segment that summarizes the dynamic of the vessel. 

Abbreviations: AIS, Automatic Identification System; BOPW, Before Opening Window; DAG, Directed Acyclic Graph; DOTS, DAG based Online Trajectory 
Simplification; DP, Douglas Peucker; IMM, Interacting Multiple Model; MRPA, Multi Resolution Polygonal Approximation; NOPW, Normal Opening Window; OPW, 
Opening Window; PED, Perpendicular Euclidean Distance; SED, Synchronized Euclidean Distance; SMOTE, Synthetic Minority Oversampling TEchnique; STDS, Ship 
Type Detection System; SVM, Support Vector Machine; TD, Top Down; TR, Time Ratio. 

* Corresponding author. 
E-mail addresses: damigo@inf.uc3m.es (D. Amigo), davsanch@inf.uc3m.es (D.S. Pedroche), jgherrer@inf.uc3m.es (J. García), molina@ia.uc3m.es (J.M. Molina). 

Contents lists available at ScienceDirect 

Journal of Computational Science 

journal homepage: www.elsevier.com/locate/jocs 

https://doi.org/10.1016/j.jocs.2022.101568 
Received 14 April 2021; Received in revised form 1 November 2021; Accepted 18 January 2022   

mailto:damigo@inf.uc3m.es
mailto:davsanch@inf.uc3m.es
mailto:jgherrer@inf.uc3m.es
mailto:molina@ia.uc3m.es
www.sciencedirect.com/science/journal/18777503
https://www.elsevier.com/locate/jocs
https://doi.org/10.1016/j.jocs.2022.101568
https://doi.org/10.1016/j.jocs.2022.101568
https://doi.org/10.1016/j.jocs.2022.101568
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jocs.2022.101568&domain=pdf


Journal of Computational Science 59 (2022) 101568

2

These variables are presented later. Although other variables related to 
the trajectory’s context could provide useful information to classify 
them, as the global position or the coast distance, STDS seeks to avoid 
this type of information. This is because it aims to find a solution based 
on as little information as possible, focusing only on the track kine
matics, which could be improved later by including the context 
information. 

The experiments, on the one hand, compare various segmentation 
techniques with respect to the original segmentation (fixed length). The 
results show the trade-off between accuracy and imbalance of classifi
cation so there is not an absolute optimal solution, but makes it clear the 
multi-objective nature of the problem, and solutions show a Pareto 
front. On the other hand, the segmentation algorithms that form the 
Pareto front, are analysed specifically. Its generated segments are 
compared in two ways: 

• Globally by using representative aggregate values for each segmen
tation algorithm and comparing between them.  

• Specifically, by analysing two trajectories, one of each class, showing 
the practical difference between the initial segmentation approach 
and the more complex ones. 

These analyses are performed by extracting specific metrics of the 
trajectory segmentation problem, such as the compression ratio and the 
residual of the points of the trajectory to the segment. 

The complex and modern segmentation algorithms evaluated (DOTS, 
SQUISH-E) show how the segments are more representative and obtain a 
better result than the Uniform sampling technique with all segmentation 
metrics studied. Still, there is considerable room for improvement in the 
classification problem. 

The main contributions of this paper can be summarised as follows: 

• Identification and study of several relevant state-of-the-art segmen
tation algorithms. 

• Implementation, testing and analysis of different segmentation al
gorithms together with several configuration parameters.  

• Analysis and identification of the experiments that provide better 
results within the classification problem, obtaining a Pareto front 
better than the original results. 

This paper is an expansion of [5], and it is organized as follows: In 
section II several methods in segmentation of trajectories of the litera
ture are explained. In section III the framework process that performs 
the trajectory-based classification is explained. Section IV explains all 
the segmentation algorithms experiments that will be the input of the 
classifier. In section V results of the work are shown, first the classifi
cation output and later an extensive analysis of the segmentation results. 
Finally, the conclusions and perspectives for future works are presented 
in section VI. 

2. State of the art 

This state of the art looks specifically at the main problem addressed 
in this paper: trajectory segmentation and how it affects the trajectory 
classification problem. A basic problem of classification uses the avail
able information to infer intelligence with diverse methods. In this 
domain, the available information is the vehicle’s track, including po
sition (latitude and longitude) with time. Such information is very 
limited for any classifier, so processing this data to infer additional 
knowledge is necessary to help the classifier to bias the inputs. This 
process is called feature extraction. For example, these recent studies 
[6–8] perform a feature extraction on the trajectory of the ship to 
determine its behaviour. This feature extraction is not adequate for a 
problem where long-duration trajectories or very heterogeneous 
mixture of trajectories appear. 

As an alternative, feature extraction can be applied on each segment 

instead of the whole track to extract more precise information for the 
classifier. There are researchers [9] who perform a segmentation before 
classification, but they use their own segmentation technique very 
specific to their problem. Alternatively, this paper experiments with 
some classical and recent segmentation techniques to analyse how they 
influence the problem of classification trajectories. Note also that all 
these papers use context information, making them incomparable with 
the present proposal. 

Vehicle trajectories, particularly in the maritime domain, are very 
long and complex, with too much information for a classifier to provide. 
Splitting them into shorter segments reduces their information and is 
useful in any learning problem. However, not all segmentations are 
adequate for each problem. For example, if it is desired to classify the 
curves, the segmenter must split the trajectory to maintain those curves, 
so that the classifier can learn them. In complex problems, like this one, 
it is unknown which type of segments is the best one to generate for a 
classifier. 

The field of trajectory segmentation has several approaches [10]. 
One of them is to use compression algorithms, which identify the 
key-points of the trajectory and use them to generate the segments. 
Segments are generated according to different conditions, e.g., time 
gaps, trajectory shape or its semantic context. Also, they can be cate
gorized according to whether they need the entire track (offline), or they 
can run in real time (online). 

The simplest approach to segmentation is Uniform sampling, which 
cut the track into segments of uniform size [11] (the approach used in 
the previous works). This paper explores segmentation algorithms ac
cording to the trajectory shape, generating segments that minimize error 
with respect to the trajectory. Fig. 1 illustrates several segmentation 
algorithms achieving different outputs on the same track. 

The classic algorithms for segmentation are:  

• Opening Window (OPW) [12]: This process, also known as Sliding 
Window in the literature, generates variable size segments by setting 
the start of the segment and searching for the end. To find the end, as 
is shown in Fig. 1(a), it evaluates each following point calculating the 
error of the segment with respect each point in the window (between 
segment start and segment end). When the error exceeds a threshold, 
the current segment is closed. Then from this point a new segment is 
started, restarting the window. The same process will be performed 
until the trajectory end. 

• Top-down [13]: It starts with a segment that covers the entire tra
jectory. Then it selects the trajectory point with the highest residual 
from the segment according to a specific error metric. That trajectory 
point is used to divide the segment. Two segments are then gener
ated, and both evaluated with the same process, making recursively 
divisions as the two shown in Fig. 1(c). This process continues until 
the highest residual is below a predefined stop threshold.  

• Bottom-up: The inverse process to Top-Down. It starts with small 
segments and the process calculates hypothetical segments that 
unifies each pair of real segments. The hypothetical segment with the 
smallest residual is transformed into a real one and the process it
erates, creating new hypothetical segments. The process works in a 
recursive manner until all errors are over a predefined stop 
threshold, meaning that the segments cannot be unified anymore. 

These algorithms need an error measure of the segment to make the 
comparison with the defined threshold. Typically, the segment error is 
calculated in relation to the trajectory by using the Perpendicular 
Euclidean Distance (PED) of each point. A big improvement is to use 
instead of PED, the Synchronized Euclidean Distance (SED) [12], which 
take into consideration track point timestamp with regard to the 
segment total time. Other improvements use more variables as direction 
variation or speed in an equal manner as the time [12,14]. 

Based on the previous classic approaches there are many other al
gorithms that seek a better performance when performing the 
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segmentation, being of interest the following ones:  

• SQUISH-E [15]: It works by creating a fixed size queue with the first 
trajectory points. On each iteration, the process adds a new point to 
the queue. As it exceeds the size, the process finds the point of the 
queue to remove. As bottom-up does, hypothetical segments within 
the window are created. It selects the segment with the smallest SED 
residual to maintain the queue size. This SED value of the eliminated 
point is shared among the neighbours as a weight, to be considered in 
the following iterations. Fig. 1(d) shows this procedure, checking in 
trios the less relevant point and removing it from the queue. This 
algorithm uses two parameters for shaping the resulting segment: λ 
guarantees a compression ratio of the track (used to calculate the 
queue size), while μ indicates the maximum SED error.  

• MRPA [16]: Which comes from Multi Resolution Polygonal 
Approximation. It works by approaching the track based on a 
bottom-up multiresolution approach, creating a DAG (Directed 
Acyclic Graph) with the multiple candidate curves (each potential set 
of segments) for different error tolerances. The DAG is represented in 
Fig. 1(b). These DAG approaches were previously common, but due 
to the high computational time required, a reduction of the search 
space is being explored, as MRPA does. The error criterion used is the 
accumulated variation of SED, LSSD. Then it selects the most suitable 
curve among those approximated in the DAG using an error 
tolerance.  

• DOTS [17]: Which comes from DAG based Online Trajectory 
Simplification. This algorithm is like the MRPA algorithm, algo
rithm, but its main feature is the online execution capability, being 
able to obtain the segments in real time. It uses a DAG to describe 
potential segments of the trajectory, as can be shown in Fig. 1(b). To 
achieve the online operation of the algorithm it simplifies the DAG 
into a tree, which vertices are the location points of the track while 
each tree depth level represents the segments. On each iteration the 
same ISSD criterion is applied locally over the new track point to 
adjust edges between consecutive layers (the edges represent the 
segments with an accepted ISSD). 

• All these segmentation algorithms are studied in this paper by ana
lysing which ones work best for the ship type classification problem. 

3. Ship-type determination using binary classification 

This section provides a brief explanation of the STDS, summarizing 
its main subprocesses, starting from the input data up to the classifica
tion algorithms. It was fully detailed in [2–4]. 

To summarise, the STDS consists of data cleaning, including the use 
of a filter to reduce noise in the classifier inputs. With the cleaned data, 
the segmentation process is used (this process is the one expanded in this 
article), and, over the segments, the data balancing process is applied. 
Finally, classification is applied, although the input is not the whole 
segment, but a series of features extracted from the trajectory (see  
Fig. 2). 

The first step is cleaning the raw data from sensors. In this case, the 
available data is from AIS sensor. It provides kinematic data of ships 
integrated with additional information such as the ship type, which is 
used here to train the classifier. Specifically, the chosen repository is the 
one provided by the Danish Maritime Authority [18], in which there is a 
recompilation of daily AIS contacts since 2006. Dealing with real-world 
raw data requires a strong pre-processing which is critical for final 
performance, removing inconsistencies, null, wrong, and noisy values. 
These problems are generated by malfunction of AIS transmitters and 
human errors. The measurement noise taken by the sensor can either be 
outliers, directly detectable evaluating the offset in GPS coordinates, or 
small noises that can be smoothed by a filtering algorithm. An IMM filter 
has been implemented to smooth the noise, configured with two 
Extended Kalman Filters as modes of prediction for ship trajectories: one 
for linear movements and low prediction noise and other to model the 
movements that would be considered noisy (speed variations, turns,.). 

Prior to classification, its necessary a process to address the unbal
ance problem present in this domain due to the lack of an equal distri
bution among classes. For instance, long and frequent trajectories of 
cargo and passenger vessels populate the training data sets and bias the 
classification models towards these categories reducing the representa
tion of other ones, like the fishing vessel category. To solve the problem, 
the system implements oversampling and undersampling techniques, 
which adjust the amount of data of each class by adding or removing 
instances [19]. The experimentation uses the original imbalanced 
dataset, and two balanced datasets: one using random undersampling, 
randomly removing instances of the majority classes, and another using 
the SMOTE algorithm [20], already used for track classification [7], 
oversampling the minority class by creating new artificial samples. 

Fig. 1. Example of how several track segmentation algorithms work.  
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The classification is based on a set of features extracted from each 
segment as shown in Fig. 2. From the track points the process extract the 
following kinematic parameters:  

• Time variation between measurements, considering the time gaps 
between two track points.  

• Speed, characterizing the speed module between two track points. 

Fig. 2. Kinematic feature extraction example.  

Fig. 3. Trajectory segmentation example.  
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• Speed variation, describing acceleration or deceleration produced 
between two track points.  

• Distance, characterizing movement range and complexity between 
two track points.  

• Course variation, describing the turnarounds between two track 
points. 

Because the possible difference in the number of measures between 
segments, is necessary to make those kinematic variables suitable as a 
classification input. The following statistical measures are applied to 
aggregate and resume all the segment track points: the mean, maximum, 
minimum, mode, standard deviation and three quartiles. Also, the total 
time of the segment is included to support the time gaps variables. 

To illustrate this process, the trajectory shown in Fig. 3 will be used. 
Fig. 2, alongside the kinematic parameters of each track point, the sta
tistical values of minimum, maximum and mean have been remarked for 
each segment. It can be seen how the track point features have variation 
in time, while the statistical values acquire a single value that summarise 
the feature for the whole segment. These statistical values are the 
extracted features that will act as input for the classification algorithms. 

Note that these segments are contiguous, belonging a trajectory point 
to two segments. For simplicity, as some kinematic parameters require 
two measurements to be calculated, it has been decided to eliminate the 
first measurement of each segment in the figure, generating a gap be
tween them. 

The classification problem considered in this work is predicting 
when a vessel is of fishing type and when it is not, i.e., a binary classi
fication problem. Common classification algorithms in binary problems 
as the Support Vector Machine (SVM) and the decision tree algorithm 
are chosen, looking to keep the importance on the segmentation prob
lem by using simple and well-known techniques but able to perform it. 

To evaluate the results obtained by the classification it is necessary to 
consider two main factors, the accuracy of the general classification and 
the specific accuracy on the minority class (fishing), which is affected by 
the imbalance in the training process. Therefore, along with the classi
fication accuracy, the F-measure metric [21], along with the sensitivity 
and precision values, is considered to assess both effects. 

The simultaneous evaluation of both metrics prevents the domina
tion of the classification accuracy by the effect of majority class. Besides, 
the presence of these two metrics makes the problem multi-objective, 
allowing to observe the Pareto’s front when displaying the results 
from different algorithms and their parameters. 

Apart from the classification result, it is possible to evaluate the 
quality of the segments generated by the different segmentation algo
rithms to be used. To evaluate the difference between a trajectory and its 
segments is possible to use accuracy metrics that define the similarity 
between two trajectories (the real one, and the one formed by the 
segments). 

PED and SED metrics, used within the segmentation algorithms to 
measure error of each segment, are metrics that could evaluate the 
segmentation result, as the distance between two trajectories is a 

measure of the accuracy of the segmentation process. 
Also, the PED and SED allow the projection of the trajectory point 

into the segment, being possible to compare the projection movement 
parameters with the trajectory point movement parameters. 

4. Trajectories segmentation experiments 

This section presents the different experiments to be carried out 
using the track segmentation algorithms. Each algorithm has different 
parameters to set its functionality depending on the problem. In this 
case, as the configuration of each algorithm is not trivial with respect to 
its impact on the classification, different experiments are performed, 
varying from each of the parameters, allowing an analysis of the impact 
of each of them. A summary of the variations of each algorithm is shown 
in Table 1 and a detailed explanation of the 196 experiments tested in 
this paper is given below. 

The base case used in STDS uses a Uniform sampling of 50 mea
surements (around 9 min). For comparison, tests with 10 and 20 mea
surements are performed as well. 

Opening window (OPW) has the following variants from its base 
implementation: 

• The cut-off criterion: whether it occurs at the point where the win
dow has exceeded the error (NOPW), and whether it is done at the 
previous point (BOPW) [12].  

• Error evaluation functions: PED or SED ("_TR", meaning Time-Ratio 
[12]), illustrated in Fig. 1. Three error values (20, 30 and 50 m) 
are tested with each function to divide the segment if the error is over 
the value.  

• To ensure that the segments are generated with a minimum length, 
favouring the classification. A minimum segment size its tested with 
the values 0, 10, 20 and 50 measurements. 

Top Down algorithm has variations for the error evaluation function, 
marked as “DP” (Douglas Peucker algorithm [13]) when it uses PED and 
as “TD_TR” when it uses SED [12]. These variations use the same error 
and minimum segment size values as OPW. 

Bottom Up has no relevant variations according to the error function, 
as only the PED error function has been used in the literature. 

SQUISH-E only uses the SED error function, with the same three error 
values already listed as μ value. In addition, it has the compression 
parameter λ, testing 1, 5 and 10 values. 

Finally, both DOTS and MRPA only vary on the error values, using 
100 and 500 as values for its accumulative SED variation. 

To evaluate the segmentation performed by each experiment, the 
following metrics are calculated on each generated segment:  

• Mean, minimum, maximum, and standard deviation for PED and SED 
error applied over:  

• Position difference between each track point and the projection point 
in the segment. 

Table 1 
Segmentation algorithms variations.  

Base algorithm Variations Subvariations Error function Error value (metres) Segment size (points) 

Uniform sampling – – – – 10, 20, 50 
OPW OPW 

OPW_TR 
BOPW 
NOPW 
BOPW_TR 
NOPW_TR 

PED, SED 20, 30, 50 10, 20, 50 
PED, SED 20, 30, 50 10, 20, 50 
PED, SED 20, 30, 50 10, 20, 50 
PED, SED 20, 30, 50 10, 20, 50 

TopDown DP 
TD_TR 

DP 
TD_TR 

PED, SED 20, 30, 50 10, 20, 50 
PED, SED 20, 30, 50 10, 20, 50 

BottomUp – – PED 20, 30, 50 – 
SQUISH-E – – SED 20, 30, 50 1, 5, 10 
DOTS – – ISSD 100, 500 – 
MRPA – – ISSD 100, 500 –  
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• Speed module difference between each track point and the projection 
point in the segment.  

• Angle difference between each track point and the projection point in 
the segment.  

• The number of segments of the trajectory and the average that are 
within each segment, allowing the analysis over the segment’s fea
tures. Related with those, the compression rate allows the measure of 
how compressed a trajectory after the segmentation is. 

Fig. 4 represents how the angle difference and speed are calculated 
for each point. α and β are the angle difference for the second and third 
trajectory points, while ΔSpeedF is the speed modulus difference for F 
point between the track point and the projected one (F′). 

5. Results analysis 

5.1. Classification results 

The performed experimentation is applied over three days in July 
2017 from AIS contacts off the coast of Denmark. In total, more than 30 
million contacts are available as system inputs. After the cleaning pro
cess, there are 7 million AIS measurements, divided into 39077 different 
trajectories. These trajectories are the inputs of the segmentation stage, 
which results in the number of segments shown in Fig. 5. It also shows a 
demonstration of the imbalance problem, being possible to see the dif
ference between the fishing class and the remaining instances (non- 
fishing). 

As mentioned, to analyse the results of the different experiments 
carried out, the accuracy and F-measure are displayed together as a 
multi-objective problem, considering the total accuracy and the problem 
imbalance problem at the same time. In Fig. 6, it can be seen the dis
tribution of values of the accuracy and F-measure corresponding to 
different variations of the classification and balancing algorithms. The 
Pareto front is formed for those non-dominated solutions, i.e., those with 
no other solutions with higher values in the two metrics simultaneously. 
In it, this front is formed by the solutions appearing in the upper-right 
corner. 

It can be appreciated how the SVM has results that are usually better 
with respect to accuracy, but in return it may have a worse performance 
when considering the class imbalance. That effect is produced because it 
is a boundary-based algorithm and has a trend to misclassify the mi
nority class if it has a low impact in the total accuracy. This is especially 
noticeable in the imbalanced classification, which shows in many cases a 
zero value for F-measure (i.e., all samples of the minority class 
misclassified). 

The decision trees have more moderate results, which do not stand 
out so much in the accuracy but in return they get better results in the F- 
measure. However, the front is clearly dominated by the SVM with 
balanced data sets, these although still have executions that demonstrate 
little success in the problem of the imbalance but also have the 

executions located in the front. 
Also, as can be seen in the points highlighted in white in Fig. 6, the 

original segmentation algorithm (Uniform sampling) used in previous 
works is behind the marked Pareto front (blue line). This implies that 
more advanced segmentation algorithms can provide better results, 
although it does not detract from the fact that some configurations of 
these algorithms have worse results. This only implies that it is impor
tant to find the correct configuration of the algorithms to use. 

The most notable results are the SVMs that operate on a balanced 
data set using SMOTE, although the random undersampling also have 
Pareto front executions. To put the results in perspective, Fig. 7 shows all 
the segmentation algorithms executed by SVM applied on the SMOTE 
balanced data set. It not only shows the results of the accuracy but also 
the results for the F-measure which is not so positive since the most 
complex segmentations usually have slightly lower results in that 
metric. 

There is no case that stands out especially from the rest, since when 
talking about a multi-objective problem between unbalance metrics and 
classification accuracy there is no algorithm that is especially good in 
both. 

Being a point to emphasize that the best algorithms in one of the 
objectives clearly obtain their improvement when getting worse in the 
other one, an example would be the SQUISH-E with 20 error value and 5 
compression parameter that obtains the best accuracy although its 
metrics are far below other algorithms. There is also the opposite case 
with the opening window algorithm, in which the best F-measure show 
an accuracy 20 points below that obtained by the specified SQUISH-E. 

Regarding the higher complexity of the segmentation algorithms, we 
can see how generally the segmentation algorithms that give better re
sults when performing the compression of trajectories (SQUISH-E, 
MRPA, DOTS) do not ensure a better result within the proposed classi
fication problem. Most of their executions seem to have good accuracy 
but not all of them good results in the F-measure used for the imbalance 
problem. In fact, one of the results belonging to the front and that 
therefore could be considered as one of the best, is obtained by the most 
basic segmentation algorithm, the Uniform sampling with a size of 50. 

Another aspect to consider is that the parameters introduced in the 
different segmentation algorithms influence the results variation, since 
the different executions of the same algorithm show very different re
sults. For example, with the SQUISH-E algorithm, is possible to observe 
different results: one with the best accuracies, other with very poor re
sults and another clearly within the Pareto front, achieving one of the 
best values within the two objectives with an accuracy close to 90% and 
balancing metrics only about 10 points below the best. Even if there is no 
absolute solution that meets the two proposed objectives, there is a set of 
solutions located on the Pareto front that are valid solutions, being 
better in one or the other objective. 

Fig. 4. Metrics example.  
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5.2. Segmentation algorithms study 

To evaluate specifically the segmentation algorithms two analysis 
are proposed. 

On the one hand, a series of metrics are extracted from the 
segmented trajectories, making a comparison between the segmentation 
algorithms of the Pareto front and between the classification problem 
classes, fishing and not-fishing. 

On the other hand, a series of representative trajectory are studied to 
show differences between the simplest segmentation, Uniform sampling, 
and an advanced segmentation, SQUISH-E. 

As metric evaluation, the PED and SED distances are used comparing 
the point motion information with its projection in the segment. In 
specific 3 motion parameters are evaluated: 

Fig. 5. Number of segments of the main ship types.  

Fig. 6. Classification results for the different proposed variations.  
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Fig. 7. SVM classification result for the segment variation in SMOTE balanced dataset.  
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• The position through the maximum error of both distances, PED and 
SED, has the distance between the trajectory point and its projection 
into the segment is a measure of the position difference.  

• The mean angle difference between the trajectory points and the SED 
projection segment point. PED results are not shown because are 
similar to SED ones. 

• The mean speed different between the trajectory point and its pro
jection in the segment. Both PED and SED are analysed as there are 
differences. 

In addition, the average number of points per segment and the 
compression rate are also analysed. 

Although other metrics have been studied to assess segmentation, as 
it can be seen in the explanation of the previous section, in this section 
we only show the ones indicated as they have shown the most relevant 
information. 

To analyse those metrics, a series of box-plot diagrams are used. 
Allowing the comparison between the segmentation algorithms results 
and a clear view of the metric distribution along all the texted 
trajectories. 

For all the analysis at first the general segmentation results are 
exposed, then the individual results for each class of the classification 
stage, fishing and not fishing, are analysed. Also, the analysis is 
explained over the segmentation algorithms implementations that 
appear int the Paretós front of the classification. 

5.3. General analysis 

5.3.1. PED / SED distance 
With respect to the distance metrics, this analysis uses the maximum 

distance error, as it represents the worst case of each segment. The first 
thing that can be appreciated in Fig. 8 is that PED clearly have smaller 
values than SED. This is normal since PED distance measures the closest 
point of the segment perpendicularly while SED deviates from the 
perpendicular according of the track point time. 

That said, it is possible to look at the differences of the compared 
algorithms. Uniform sampling shows little error despite cutting without 
any intelligence, although this is due to cutting every few points. This 
means that the error cannot grow sufficiently. The opposite is the case 
with OPW-TR, which, as it has a high minimum number of measure
ments, shows more error than the rest of the algorithms compared. It is 
important to note that the versions of the algorithms chosen for com
parison are those within the Pareto front, and that other versions of the 
algorithms would show a completely different segmentation result. 

Looking at the algorithms that cut most intelligently, SQUISH-E 
shows a scale where the error increases with different implementa
tions of the algorithms. This scale is logical since the error increases as 
the compression ratio increases, which implies that as more segments 
are made with more points, these segments accumulate a higher error. 

The graph-based algorithms, DOTS and MRPA, show a lower error, 
the main difference being that these two algorithms use an accumulation 
of the error when performing the segmentation, which implies that they 
segment earlier than SQUISH-E, reaching a lower error. A remarkable 
feature is that these two algorithms do not show outliers that deviate to a 
large extent with respect to the rest of the measures, which is the case 
with the rest of the segmentation algorithms. 

Comparing the algorithms for both classes, fishing, and non-fishing 
focusing on SED distance (Fig. 9), the results are in line with the gen
eral results. It is noteworthy that the error of Fig. 8 the fishing class is 
lower than that of the non-fishing class, especially with OPW-TR whose 
maximum SED is greatly increased with respect to that obtained for 
fishing vessels. This is because non-fishing vessels are a conglomerate of 
different vessels, which implies a greater variation of trajectories and 
consequently a greater error. In addition, the trajectories of this class are 
generally longer than those of the fishing class, which can also lead to an 
increase in error due to the required compression ratio increase. 

5.4. Number of points per segment and compression rate 

In Fig. 10 is possible to see how Uniform sampling entries produce a 
constant segment size, as its segments are created on a fixed size. The 
OPW-TR has a minimum number of points per segment, which means 
that its segments are larger and consequently there is a higher 
compression ratio than in the rest of the algorithms. 

Is remarkable, the advanced algorithms also in Fig. 10 show a similar 
average, with approximately 10 points per segment. This value is the 
one used by the Uniform sampling entries on the Pareto front, so it can 
be assumed that a segment size around this value seems to give good 
classification results. 

If the compression rate of each of the classes in Fig. 11 is observed, 
the advanced algorithms that are influenced by the size of the segment to 
be generated have a higher value for the fishing class, especially the 
SQUISH-E algorithm. One effect of this feature is that the fishing 
SQUISH-E tends to have measurements centred on a zone that allows a 
higher compression rate. Within the SQUISH-E algorithm, it can also be 
observed that variations of the algorithm in fishing generate measure
ments that are more similar to each other than in non-fishing. 

Fig. 8. Maximum PED and SED for all segments.  
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Fig. 9. Maximum SED distance for fishing and non-fishing segments.  

Fig. 10. Average number of points per segments.  

Fig. 11. Compression rate for fishing and non-fishing segments.  
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5.5. Average angle difference 

In general, it can be seen in Fig. 12 that the most intelligent seg
mentation algorithms, SQUISH-E, MRPA and DOTS, have smaller angle 
differences. This indicates that these algorithms consider the dynamics 
of the ship when performing the segments, since the increase of the error 
when there are turns indicates the existence of a new segment. 

Looking at the difference between classes in Fig. 13, fishing vessels 
have a greater difference in angle, which may be indicative of a greater 
variation in their trajectories. 

5.6. Average speed difference 

Finally, with respect to the variation of speed, the most remarkable 
thing is that the input data belong to ship trajectories, which implies 
little variation due to the movement of the ships. However, between SED 
and PED (Fig. 14) SED has a higher value. This is again because the SED 
measurement is more informed as it is adjusted with respect to the time 
of the point, instead of being set perpendicularly. 

Again, if the classes are observed (Fig. 15), fishing has a smaller 
speed difference than non-fishing, this indicates that the distance trav
elled will be shorter for fishing vessels and that fishing vessels have a 
slower movement. 

5.7. Segmentation illustrative examples 

5.7.1. Fishing ship 
One common situation is the one shown in Fig. 16. As it can be seen, 

the trajectory shows a fishing ship entering the port which implements 
two rectilinear movements at the approach, with a little course variation 
in between, and a manoeuvre segment in the port. An advanced algo
rithm could take this information and make more informed segments. 

In the left, the original and simplest Uniform sampling algorithm, is 
applied. Its segments are less informed as the cuts are applied without 
taking into consideration the ship movement. In contrast, In the right, an 
advanced segmentation as SQUISH-E algorithm creates three segments, 
one for each defined movement. 

Analysing the features extracted of the segments, is possible to see 
kinematic parameters like the course variation represented in Fig. 18 
that show an increasing average value as the segment increase the 
manoeuvre. The speed modulus represented in Fig. 17 shows a 
decreasing value as it approaches the port, well divided by both 
algorithms. 

As it can be seen in Fig. 17, the features also show variation although 

this segmentation technique show more segments with the same mea
sures instead of one segment that summarized the movement. 

This does not necessarily have to be a bad quality of the segmenta
tion, because as can be seen the manoeuvring part is more detailed with 
these shorter segments. On the other hand, however, more noise is 
introduced into the classification problem. The solution is to find algo
rithms that maintain a balance between detailing the parts of greatest 
interest and summarising those that do not provide information. 

It is noteworthy that the Uniform sampling algorithm loses infor
mation at the end of the segments, when the last one does not reach the 
minimum size set, in this case, 10 measurements. 

5.8. Non-fishing ship 

Other interesting movement is the one of Fig. 19, which show a long- 
distance movement in the middle of the sea for a non-fishing ship (in 
specific is a cargo ship). As it can be seen, it shows also three differen
tiate movements: two rectilinear movements separated from a 
manoeuvre movement in between. 

As it can be seen an advanced algorithm like SQUISH-E creates three 
segments (see right), and Uniform sampling algorithm gets much more 
segments (see left). 

If the features are analysed (see Fig. 20 and Fig. 21) is possible to see 
how features like speed variation or course variation are quite well 
represented and partitioned in SQUISH-E, with the exception of the 
middle manoeuvre movement that show a variation that differentiates 
the segment. 

This excessive segmentation that Uniform sampling algorithm gen
erates, increases a possible bad performance, introducing to the classi
fication process multiple equal features that could create 
misinformation or overfitting to the training dataset. 

6. Conclusions and perspectives 

In the study, the impact of segmentation on the classification results 
have been analysed, being possible to appreciate as the most advanced 
algorithms usually provide better results in accuracy objective. How
ever, the segments provided by these algorithms do not ensure good 
results in the second objective proposed, which is related to the per
formance with the minority class, due to the high imbalance in the data 
set. That said, the results show a Pareto front with different solutions 
that work for the two objectives imposed within the multi-objective 
problem. 

As a conclusion, it is very important the quality of the segments 

Fig. 12. Average angle difference in SED for all segments.  
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Fig. 13. Average angle difference in SED for fishing and non-fishing.  

Fig. 14. Average speed difference in PED and SED for all segments.  

Fig. 15. Average speed difference in SED for fishing and non-fishing.  
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within the proposed process since there are trajectories with more 
measurements than others which create more segments with certain 
segmentation algorithms, affecting the classification. Also, by classifying 
segments it is possible to introduce noise with non-representative seg
ments to its class (e.g., a ship departing from a port), or overfitting a 
specific class to a non-representative type of dynamics. Finding the kind 
of segments that each segmenter generates, as well as those prioritised 
by each classifier, is further research that should be carried out to assure 
that a proper solution is adopted. 

The SVM algorithm has demonstrated that it has the capacity to 
obtain good results for the classification, however it has a clear tendency 
towards the trivial solution, harming the minority class to obtain good 
results when maximizing the majority class. 

Both classification algorithms are representative and responsive to 
the analysed balancing algorithms. The main point of improvement for 
the future will be to test new classification algorithms, that achieve a 
better separation of instances, particularly those that can benefit most 
from the segments. Also, the application of the proposed method can 

Fig. 16. Fishing segments with Uniform (left) and SQUISH-E (right).  

Fig. 17. Speed comparison between Fishing segments with SQUISH-E (top) and Uniform (bottom).  
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approach other similar problems where classification is performed based 
on kinematic information of trajectories. For example, a classification 
oriented on pedestrian traffic could ensure safety (pickpocket identifi
cation), or the application in air traffic can allow flying mode identifi
cation thanks to the track segments adaptability. 

From the point of view of the segmentation algorithms, it has been 
observed that the more advanced algorithms show more informed seg
ments of the ship motion dynamics. However, it is also possible to obtain 
good results with less advanced algorithms if they are properly 
configured. 

The type of movement made in the trajectories also has a strong 

influence on the result, as long movements with little variation can 
damage some segmentation algorithms, generating more segments than 
desired. 

The error in the accuracy of the segmentation algorithms is lower in 
the more advanced ones, although a low error can be obtained with 
simpler algorithms. In addition, the average compression ratio of the 
Pareto front algorithms is in the same area, indicating that the most 
informed segments for the problem need a compression ratio in this 
area. 

This work raises potential areas for future work, both in the field of 
trajectory classification and segmentation. The most obvious one is to 

Fig. 18. Course variation comparison between Fishing segments with SQUISH-E (top) and Uniform (bottom).  

Fig. 19. Example non-fishing trajectory with SQUISH-E algorithm.  
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analyse in more detail, as in this work, other components of the 
framework, such as data cleaning or classification processes, to improve 
the overall result. Additionally, in segmentation, to study other algo
rithms focused on vehicle dynamics rather than on the trajectory shape, 
or to automatically find the ideal parameters of each segmenter for the 
problem. 

CRediT authorship contribution statement 

Daniel Amigo: Visualization, Writing – review & editing, Writing – 
original draft, Data curation, Resources, Formal analysis, Validation, 
Software, Methodology, Conceptualization. David Sánchez: Visualiza
tion, Writing – original draft, Data curation, Formal analysis, Validation, 
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