
Review

International Journal of Distributed
Sensor Networks
2021, Vol. 17(10)
� The Author(s) 2021
DOI: 10.1177/15501477211050729
journals.sagepub.com/home/dsn

Review and classification of trajectory
summarisation algorithms: From
compression to segmentation

Daniel Amigo , David Sánchez Pedroche , Jesús Garcı́a and
José Manuel Molina

Abstract
With the continuous development and cost reduction of positioning and tracking technologies, a large amount of trajec-
tories are being exploited in multiple domains for knowledge extraction. A trajectory is formed by a large number of
measurements, where many of them are unnecessary to describe the actual trajectory of the vehicle, or even harmful
due to sensor noise. This not only consumes large amounts of memory, but also makes the extracting knowledge pro-
cess more difficult. Trajectory summarisation techniques can solve this problem, generating a smaller and more manage-
able representation and even semantic segments. In this comprehensive review, we explain and classify techniques for
the summarisation of trajectories according to their search strategy and point evaluation criteria, describing connections
with the line simplification problem. We also explain several special concepts in trajectory summarisation problem.
Finally, we outline the recent trends and best practices to continue the research in next summarisation algorithms.

Keywords
Trajectory summarisation, trajectory segmentation, trajectory compression, data compression, Douglas–Peucker, spatial
data analysis, trajectory partitioning

Date received: 19 April 2021; accepted: 9 September 2021

Handling Editor: Lyudmila Mihaylova

Introduction

Geolocation is a technique that makes possible to give
a position to an object by identifying its geographic
position on the Earth at a moment in time. It can be
achieved by external sensors that allow tracking (radar,
Light Detection and Ranging (LiDAR) and video) or
using internal sensors (global navigation satellite sys-
tem (GNSS)) that achieve their own geolocation.

It is a technique that has existed since the 1950s in
the military and space fields. Nowadays, it is accessible
to everyone in tiny devices with high precision at low
consumption and manufacturing costs. This has pro-
gressively made the applications of the technology
spread to all sectors: from military tasks such as pre-
cisely locating the position of a fighter jet, to transport
uses like monitoring cargo shipments or surveillance of

endangered animals, and to everyday and everyone
functions such as the use of the Global Positioning
System (GPS) navigation system in their cars (164 mil-
lion people in the United States use it in their mobile
phones).

This increase in existing information related to geo-
location allows it to be exploited using data analysis
approaches, like machine learning and big data, making

Applied Artificial Intelligence Group (GIAA), University Carlos III of

Madrid, Madrid, Spain

Corresponding author:

Daniel Amigo, Applied Artificial Intelligence Group (GIAA), University

Carlos III of Madrid, Avenida de Gregorio Peces-Barba Martı́nez, 22,

Colmenarejo, Madrid 28270, Spain.

Email: damigo@inf.uc3m.es

Creative Commons CC BY: This article is distributed under the terms of the Creative Commons Attribution 4.0 License

(https://creativecommons.org/licenses/by/4.0/) which permits any use, reproduction and distribution of the work

without further permission provided the original work is attributed as specified on the SAGE and Open Access pages

(https://us.sagepub.com/en-us/nam/open-access-at-sage).

https://doi.org/10.1177/15501477211050729
http://journals.sagepub.com/home/dsn
http://crossmark.crossref.org/dialog/?doi=10.1177%2F15501477211050729&domain=pdf&date_stamp=2021-10-30


it possible to obtain new knowledge. It can be applica-
ble at different levels to improve and refine intelligent
systems.

By grouping geolocation measurements of the same
object ordered in time, it is possible to generate trajec-
tories that represent the movement of the geolocated
object. According to Zheng,1 there are four types of
trajectories depending on the object that perform the
trajectory (people, vehicles, animals or natural
phenomena).

It is estimated that by 2022 there will be 29 trillion
connected devices in the world, with more than 62% of
them being related to the Internet of Things (IoT).2

Among today’s devices, GPS typically has a refresh
rate of 10 Hz, which means that trajectories of long
duration can become very heavy. In fact, one experi-
ment3 proved that storing the GPS records of 400 cars
monitored throughout the day costs approximately
100 MB per day.

This implies that the available trajectory information
is enormous, meaning a time and processing capacity
cost that may be too high. In addition, the use of partic-
ularly long trajectories can result in failures of the data
mining techniques due to the inability to analyse the
details of the trajectory. One recommendable approach
in data mining of trajectories is the decision into smaller
parts (segments) simplifying the search for patterns of
interest.1

Hence, it appears the need to summarise trajectories
in a way that makes the information stored in the tra-
jectories more processable and useful. This new term
introduced in this work covers a whole spectrum of
other closely related terms, such as trajectory compres-
sion or trajectory segmentation. When summarising
trajectories, the simplest approach is data compression,
specifically trajectory compression, which seeks to
reduce the amount of data stored to obtain a trajectory
with less weight when it is processed, stored or sent,
reducing costs in each aspect and speeding up any tra-
jectory processing algorithm.

Trajectory compression algorithms stem from line
simplification algorithms. With the ‘birth’ of comput-
ing, there were many uses of vectorial figures: represen-
tation of maps, drawings for printing and so on. The
computational constraints were much greater than they
are today. As a result, the various tasks could not deal
with high-resolution data, making it necessary to sim-
plify the lines and polygons used. Researchers as
Bellman, Douglas–Peucker, Jenks, McMaster, and
many others addressed that problem.

Today, such computational limitations are not that
relevant, and the problem has changed by having an
additional dimension with the timestamp of the trajec-
tory. Therefore, the current trend in the literature is no
longer to summarise trajectories to reduce the storage
resources. The objective is to discover new knowledge

from this summary moving from these compression
techniques towards trajectory segmentation techniques
that summarise them using segments that are represen-
tative of the different parts of the trajectories and pro-
vide a semantic description. This trend does not negate
older techniques that only sought to compress as there
are many approaches that use compression techniques
to obtain representative segments.

Advancing from the more simplistic approach of the
line simplification problem there is the inclusion of time
within the data, which allow the work in time series
and trajectory information. In the 2000s, this transition
started with Keogh et al.4 segmenting time series,
Meratnia and De By5 introducing the time dimension
in the compression process, and Anagnostopoulos
et al.6 starting the trajectories segmentation.

There are reviews and surveys that cover this prob-
lem of summarisation in the literature,7–14 although
most reviews address this problem in a tangential way
as they focus on more generic problems. The ones that
explore this problem are brief and leave aside the com-
pression or segmentation branches. Moreover, they
explain the problem from the time series or trajectories
point of view exclusively, without addressing the con-
nection and distinction between the two approaches.

Since there are so many different approaches to the
trajectory summarisation problem and the absence of a
review that covers them all from a point of view that
summarises the whole spectrum, in this article a review
and classification of the literature is attempted. This
article considers the whole spectrum of trajectory sum-
marisation, focusing on compression and segmentation
techniques.

This study of the literature has collected 162 sum-
marisation algorithms. All of them have been analysed
and classified within parameters extracted after the
analysis of each paper and algorithm design that cover
both segmentation and compression algorithms. In
addition to algorithms classification, the tests proposed
for each algorithm are studied to check whether their
performances have been proven to be predominant in
the literature. This complete study of each algorithm
can be found and download at the website:15 https://
danielamigo.github.io/trajectorySummarisationReview/.
It allows to compare these algorithms through the para-
meters, thus better understanding their similarities and
differences.

It has been observed that, although these two
approaches to the problem of summarising trajectories
exist (compression and segmentation), the algorithms
used for both approaches are similar and have many
characteristics in common, being two of the most
important characteristics:

� The search strategy consists of the methodology
used to study the whole set of all raw trajectory

2 International Journal of Distributed Sensor Networks

https://danielamigo.github.io/trajectorySummarisationReview/
https://danielamigo.github.io/trajectorySummarisationReview/


points. Depending on the strategy, a higher or
lower quality representation can be obtained,
but it will affect the computation time needed to
obtain the summarisation.

� The evaluation criteria which are the method
used to evaluate whether each subset of the
points studied by the strategy should belong to
the raw trajectory. This preservation criterion
gives priority to one type of result in terms of
the summarisation to be obtained, so it is impor-
tant to choose it according to the problem to be
solved.

During the literature study, certain special algo-
rithms were found that approximate the problem with
unique characteristics. For example, there are lossless
compression algorithms that are focused on not losing
information when summarising the trajectory, or algo-
rithms to summarise trajectories considering the road
networks on which they move. We also find summarisa-
tion algorithms aiming to generate knowledge directly.
Known as semantic summarisation, they generate seg-
ments with a specific behaviour. This behaviour can be
related to the movement dynamics, for example, high-,
or low-speed segmentation, or related to the context,
for example, stopping near a specific location.

In addition, our literature review pointed out other
common characteristics, showing a trend change over
the years in the algorithms, which should prevail in
future works. For instance, the shift from the data used
for the summarisation, adding other dimensions like the
temporal data, the need to obtain the summarisation
quickly or even in real time, or the search of the best
parameters of the algorithms to obtain good results.

This work does not intend to conclude which algo-
rithm is the best for each use, as it is an impossible
task. It is necessary a specific analysis depending on the
intended use and data characteristics to decide the best
one according to the needs of each problem: online or
batch compression, limited computational power,
mobility constraints such as roads, prioritisation of
other variables such as orientation or semantic content
and so on. Still, one way to identify how good is a par-
ticular algorithm is to check its paper’s comparisons
with other algorithms (column ‘Comparison to other
algorithms’ on the website15). In order to facilitate the
navigation through the many algorithms, a brief and
general summary of the overall findings of this work is
provided as follows:

� Overall, this study concludes that the traditional
line simplification algorithms, such as the
well-known Douglas–Peucker algorithm, are
outdated for trajectory summarisation, as there
are plenty alternatives that provide improved
results across all metrics.

� Algorithms with probabilistic models of the tra-
jectory movement are promising solutions. For
example, self-adaptive online trajectory sampling
(SAOTS) or interacting multiple model (IMM)
provide good results. Note also that they are
capable of producing semantic content.
Alternatively, without modelling their dynamics,
window strategy–based algorithms such as
SQUISH-E or opening window-time ratio
(OPW-TR) perform well, achieving a good bal-
ance of computational cost with easy tuning
parameters.

� If it is not required a real-time operation, batch
solutions are preferable to online solutions.
Among this type, the ones that perform a graph-
based strategy stand out. Algorithms such as
directed acyclic graph based online trajectory
simplification (DOTS) or multiresolution poly-
gonal approximation (MRPA) obtain subopti-
mal solutions with reasonable computation
times.

The main contributions of this review can be sum-
marised by the following aspects:

� An introduction and motivation of the trajectory
summarisation problem and its links with trajec-
tory segmentation and compression techniques.

� An accessible global classification of all types of
trajectory summarisation, focusing in two
aspects: the search strategy and the evaluation
method for selection of key points.

� A compilation of notable approaches found in
the literature for specific sets of algorithms.

� A compilation of common features to all algo-
rithms found in the literature, introducing
important trends to preserve in future works.

The remainder of this article continues as follows.
Section ‘Basic concepts’ introduces some basic concepts
of trajectory summarisation to fully grasp the rest of
the work. Section ‘Trajectory summarisation algo-
rithms’ provides the two main categories proposed to
classify all the algorithms reviewed. Section ‘Special
approaches’ describes several special approaches for
trajectory summarisation, while section ‘Other charac-
teristics’ discusses other secondary classifications to
highlight trends to be followed in future works. Finally,
section ‘Conclusion’ concludes the work.

Basic concepts

In this section, some preliminary concepts are intro-
duced and formally defined to understand the follow-
ing sections of this article. Table 1 summarises all the

Amigo et al. 3



notations presented in the section. The concepts are
explained supported by the illustration of Figure 1.

Definition 1 (time series). A list of ordered tuples, being
one part of the tuple, the time reference corresponding
to the measure magnitude. The other part of the tuple
is the measurement itself, which varies according to the
problem.

Definition 2 (trajectory). Time series that stores target
localisation data over time. The second part of the tuple
is the measurement of the target position at each time
instant.

Definition 3 (trajectory point). A trajectory point is a tuple
that stores the measurement of the target at a certain
time. Therefore, a trajectory point is formed by two
components: the timestamp when the measurement was
taken and the spatial location of the target in that time.
The spatial information can be represented in local
(xt, yt) or global (Latt, Lont) coordinates may have a
third dimension (zt or Heit) if the points form a three-
dimensional (3D) trajectory. It is represented as
pt =(timet, spatialt).

Definition 4 (raw trajectory). Original trajectory before
any processing is represented as T = fP1,P2, . . . ,Png.

Definition 5 (summarised trajectory). A summarised trajec-
tory is a trajectory formed by a subsequence of the tra-
jectory points (selected trajectory points in Figure 1) of
a raw trajectory. It is represented as
T 0= fP1,P2, . . . ,Pmg, where T 0 � T . To obtain the tra-
jectory point subsequence, it is necessary to use a sum-
marisation algorithm.

Definition 6 (segment). A segment is a subtrajectory
formed by two consecutive points of a summarised tra-
jectory. For example, in Figure 1 trajectory, P1 and P4

form the segment represented as P1P4
��!

. It summarises
the associated points of the raw trajectory, which are
the ones that are located between P1 and P4.

Definition 7 (trajectory point projection in
segment). Represented as P0n, is the representation of
non-selected trajectory point (Pt) on its associated seg-
ment. In example, P02 is the projected point in segment
P1P4
��!

of trajectory point P2.

Definition 8 (compression ratio). A ratio that measures
how much a summarised trajectory is reduced with
respect to the raw trajectory. It is measured by dividing
the number of removed points of the raw trajectory to
form the summarised trajectory with respect to the total
points of the raw trajectory. In Figure 1 trajectory, it is
1� (4=11)= 64%.

Definition 9 (semantic trajectory). Summarised trajectory
in which each of the segments has a semantic meaning
specific to the problem, for instance, uniform, turn,
stop and so on.

Definition 10 (summarisation algorithm). Algorithm used to
obtain a summarised trajectory by the processing of a

Figure 1. Trajectory example.

Table 1. Notation summary.

Notation Definition

T Raw trajectory
T0 Summarised trajectory
Pt Trajectory point, represented by the spatial

information and the associated time
(xt, yt) Spatial information of a trajectory point on local

coordinates
PsPe
��!

Segment that starts in Ps trajectory point and
ends in Pe trajectory point

P0t Trajectory point projection

4 International Journal of Distributed Sensor Networks



raw trajectory. It needs a search strategy to process the
trajectory points sequence and an evaluation criterion
that decides if each point should be in the summarised
trajectory subsequence.

Definition 11 (evaluation criteria). The criteria that any
summarisation algorithm has. Is used to decide if a tra-
jectory point should be included in the summarised tra-
jectory subsequence or not.

Definition 12 (search strategy). Methodology that differs
between the different algorithms and is used to pass
over all the raw trajectory points making the process of
the entire sequence.

Trajectory summarisation algorithms

As already indicated, the algorithms that summarise tra-
jectories have the objective of calculating the most rele-
vant points of a raw trajectory to obtain a summarised
trajectory. In the whole set of algorithms, two key ele-
ments have been found by means of which it is possible
to classify the different algorithms, the search strategy
and the evaluation criteria to select the key points.

Therefore, to summarise the different algorithms
analysed, this section is broken down into two sections:

� The first one focuses on the relevant point selec-
tion criteria, which summarises the different
approaches found when deciding whether to
keep or not to keep each point in a subsequence
of the raw trajectory within the summarised
trajectory.

� The second one consists of the processing strat-
egy, and summarises the different approaches
found when processing the set of points of the
trajectory to evaluate the subsequence to be sim-
plified based on the selection criteria.

Note that these two concepts are not separated but
act in tandem to form the algorithm that finds the sum-
marised trajectory.

Figure 2 resumes the different possible classifications
that have been found within these two main categories,
a trajectory summarisation algorithm may work by
combining a strategy with a point selection criterion.

In each of the following sections, only the most rele-
vant algorithms will be mentioned. At the end of the
section, Table 2 indicates where in these categories each
of the algorithms studied belongs.

Trajectory point evaluation criteria

As mentioned previously, all trajectory summarisation
algorithms need a method to decide whether a point in

the raw trajectory should belong to the summarised tra-
jectory. This process is commonly referred to as heuris-
tics. On the simplest criteria it might seem appropriate,
although it is not for more complex approaches that are
being developed.

This selection of points is usually done by giving a
specific score to each trajectory point. This score is
based on a specific methodology to quantify by means
of a concrete analysis how good a point is compared to
another. The strategy will use this score to decide at
each moment which point should be included in the
summarised trajectory and which point should be
discarded.

Throughout the literature review, it has been
observed that this category groups the algorithms into
the following subcategories according to the methodol-
ogy used for the selection of these representative
points:

� Trivial: the most basic algorithm approaches.
They do not use any score, only rely on a very
basic rule to make the inclusion decision.

� Distance: these algorithms use the distance
between relevant points in the summarisation

Figure 2. Summarisation algorithms classification.

Amigo et al. 5



process or the trajectory to make the preserve
decision.

� Velocity: these algorithms use the velocity in
points to make the decision.

� Angle: these algorithms use the angle difference
between several trajectory points to make the
decision.

� Area: these algorithms calculate areas by mer-
ging several points in the summarisation process
to make the decision.

� Transform: these algorithms are based on the
definition of a series of points that mathemati-
cally generate a function that approximates the
trajectory.

Table 2. Trajectory summarisation table.

Strategy Preserve
criterion

Techniques

Sequential Distance AMS,16 TD-TR reduce,17 WKMeans,18 Pyramid,19 ADP,20 CB-SMoT,21 STC,22

GRASP-UTS,23 RGRASP-SemTS,24 BTC,25 OLDCAT,26 SGTCR-CS,27 GSC and GSTC28

Angle TD-TR reduce,17 Persistence,29 OLDCAT26

Velocity TD-TR reduce,17 CB-SMoT,21 AACAT,30 SimpleTrack,31 SAS,32 SAOTS,33 OLDCAT26

Transform Coresets,34 AACAT,30 SimpleTrack,31 SGTCR-CS27

Probabilistic IMM,35–37 APSOS,38 SAS,32 SAOTS,33 SGTCR-CS27

Graph Distance Bellman,39,40 DOTS,41 DOTS-CASCADE,41 Iri-Imai,42,43 MRPA,44 Daescu,45,46 OGPC
and OSPC,47 MMTC-offline,48 MMTC-online,48 SPPA,49 GRTSOpt,50 Latecki,51 Trajic,52

Representativeness,53 KAA and StreamKAA,54 OLTS and OPTTS,55 DOTS*,56 OSC and
OSTC,28 CLEAN57

Angle VTracer,58 DPTS+ ,59 Latecki,51 SP60

Velocity DOTS*56

Opening Window Distance PoI and PoIE,61 GRPPA,62 TSHL,63 AMS,16 CFF,64 BOPW and NOPW,4 OHTA,
OnlineOHTA and SATA,65 CDR, CDRm, GRTSOpt and GRTSSec,50 TraClus,66 OPERB
and A-OPERB,67 BQS,68 ABQS, FBQS and PBQS,69 LO-OPW-TR,70 OPW-TR,3 SMoT,71

Pan,72 Patroumpas,73,74 STTrace,75 Resheff,76 Reumann-Witkam,77 EPP,78 SplitTrajs,79

BTC and HTC,25 TPMF,80 DR,81 SetraStream,82 ROCE,83 SPD84

Angle GRPPA,62 TSHL,63 CFF,64 Angular,85 Interval,86 OHTA, OnlineOHTA and SATA,65

TraClus,66 OPERB and A-OPERB,67 BQS,68 ABQS, FBQS and PBQS,69 Intersect,60

Error-Search, Min-Error and Span-Search,87 Pan,72 Patroumpas,73,74 Thresholds,75 EPP,78

SplitTrajs,79 BTC,25 TPMF,80 Zhao-Saalfeld88

Velocity SUTC,89 OPW-SP,3 Pan,72 Patroumpas,73,74 Thresholds,75 SplitTrajs,79 TPMF,80

CoTracks90

Probabilistic TSHL,63 OPERB,67 A-OPERB67

Sliding Window Distance SWS,91 OWS,92 WSII,93 ISW,94 Opheim-improved,95 RSLC and TSLC,96 FFUS,97 FSW,98

BQS,68 ABQS, FBQS and PBQS,69 FastSTray,99 TD-TR,3 SQUISH,100 SQUISH-E(l) and
SQUISH-E(m),101 Opheim,102 STMaker,103,104 ISW-SPM,105 TSA1 and TSA2,106 DPSW107

Angle SWS,91 OWS,92 WSII,93 ISW,94 DPBGD,86 FFUS,97 GS,108 BQS,68 ABQS, FBQS and
PBQS,69 FastSTray,99 Pikaz,109 STMaker,103,104 DPSW107

Area VW-TS,110 VW111

Velocity GS,108 TD-SP,3 DPSW,107 HESAVE112

Transform FastSTray99

Split Distance GRPPA,62 Similarity,113 DP,114 SWS,91 OWS,92 WSII,93 TCMM,115 TD-TR reduce,17 DP-
hull,116 SWAB,4 FFDP,97 GRTSSec,50 Pyramid,19 ATS,117 ADP,20 INCM,118 ESTC-EDP,119

SPM,120 STMaker,103,104 ISW-SPM,105 SELF,121 TPMF,80 DPSW,107 SNDSC,122 SPM3D,123

VO124

Angle GRPPA,62 SWS,91 OWS,92 WSII,93 TCMM,115 TD-TR reduce,17 DPDP,86 FFDP,97 ATS,117

STMaker,103,104 SELF,121 TPMF,80 DPSW,107 SNDSC122

Area IC-MBR125

Velocity 2stage-pls,126 TCMM,115 TD-TR reduce,17 ESTC-EDP,119 SELF,121 TPMF,80 DPSW,107

SNDSC122

Merge Distance TS,127,128 SWAB,4 DMin, S-DMin and SE-DMin,129 SQUISH,100 SQUISH-E(l) and
SQUISH-E(m),101 STTrace,75 GSC and GSTC28

Angle TS,127,128 Persistence,29 DMin, S-DMin and SE-DMin,129 GS108

Area Anagnostopoulos,6 EXTA,62 IC-MBR,125 Pikaz,109 VW-TS,110 VW111

Velocity GS108

Probabilistic TS127,128

6 International Journal of Distributed Sensor Networks



� Probability: these algorithms use probabilities
calculated by the algorithm itself to make the
decision.

� Based on multiple criteria: these algorithms com-
bine several of the above criteria to make the
decision.

Trivial. Of all the ways of point selection, this is the sim-
plest possible. Unlike the other methods, this method
does not perform any analysis of the trajectory charac-
teristics to select the trajectory point to preserve.
Instead, it is based solely on a simple selection criterion
applied to a list of points.

The first solution in this classification is known as
the nth point routine or uniform sampling. Much of the
literature gives this application to the work of
Tobler.130,131 In this, points are selected with a constant
sampling of N measurements, discarding for summari-
sation the N 2 1 measurements in between two selected
measurements. In this way, a specific compression ratio
is ensured, and segments of a fixed size are obtained.

The other solution found in the literature, instead of
relying on a uniform criterion, evaluates each point ran-
domly. On each trajectory point, it applies a random
function to decide whether to keep that trajectory point
or not. Vitter132 is the reference that encompasses these
approaches. He made a proposal and comparison of
line compression using reservoir sampling.

This type of algorithm has the advantage of having
a very low execution cost, making it a very simple and
fast way to generate a series of segments. Conversely, if
these segments have a high level of compression, they
will lose the most complex and sharp parts of the tra-
jectory, which is a big drawback for future analyses.

Distance. As mentioned previously, trajectory compres-
sion algorithms naturally emerge from the polygonal
approximation and line simplification algorithms. The
data used by these algorithms consisted only of ordered
geometric points which, connected by lines, form fig-
ures or polygons.

This approach is therefore the most common
throughout the literature, because of the clear impor-
tance of a trajectory shape over the plane. The distance
is used to compare two points with each other in the
same coordinate system. In this problem, distance can
be applied to different relevant points, each one being a
different approximation.

Trajectory point and segment distance. The most com-
mon use of distance is the comparison between the raw
trajectory and the summarised one. For each point on
the raw trajectory, the distance to the summarising seg-
ment can be measured. This distance can be used to
detect if the summarised segment after removing some

points is not as similar to the raw trajectory as desired.
Also, it can be used to choose which point in the trajec-
tory should be preserved. By carrying out this process
through all the trajectory points, the strategy will find
the summarised trajectory.

The first and logical version of this distance uses the
shortest path from the trajectory point to the segment.
This distance is the Euclidean distance, known in the lit-
erature as Perpendicular Euclidean Distance (PED). It
was first introduced with the best-known algorithm in
the summarisation literature, Ramer–Douglas–Peucker
(DP). Initially proposed by Ramer133 in 1972 and refined
by DP,114 the DP algorithm makes splits in the trajec-
tory by the trajectory point with the highest PED.

As this metric is measured at trajectory point level,
it can be used in multiple ways. DP uses the maximum,
but other researchers use it in a grouped form over
time, with the metrics Integral Square Error (ISE)134

and Local Integral Square Error (LISE).135 ISE quad-
ratically groups all the PED distances of the trajectory.
It has a high computational cost but ensures an optimal
solution. However, LISE only accumulates the errors
of the current segment, ignoring the rest of the seg-
ments. Therefore, its solution will be suboptimal,136

although it has a better computational cost.
This whole process was designed for line simplifica-

tion solutions. From the 2000s onwards, when trajec-
tories became popular, researchers realised that current
algorithms, designed for geometric shapes, were not
valid for trajectories.3 Trajectories are not merely a spa-
tial shape but had an extra dimension with the time at
which each trajectory point is measured.

Meratnia and De By3 introduced a way of introdu-
cing the time dimension into the preserve criterion,
using its Time Ratio (TR) metric. Instead of calculating
the distance of the raw point perpendicular to the seg-
ment, it performs a projection of the actual point onto
the segment. This projection is calculated by adjusting
the time travelled on the raw trajectory and the dis-
tance, compared to the distance of the summarised seg-
ment. This makes the projected trajectory point
maintain the time proportions even on the segment.
Later, Potamias et al.75 made a metric with the same
objective but more efficient, called Synchronous
Euclidean Distance (SED). The latter is widely accepted
by many researchers. The difference between PED and
SED distance can be seen in Figure 3.

As with PED, there are the cumulative metrics ISE
and LISE, algorithms such as MRPA44 and DOTS41

adapt them to SED with integral square synchronous
euclidean distance (ISSD) and Local Integral Square
Synchronized Euclidean Distance (LISSED), respectively.

Consecutive trajectory points distance. Another way to
use distance is to measure the separation between con-
secutive trajectory points, as it is represented in grey in

Amigo et al. 7



Figure 3. This value is used by several researchers to
check whether one measurement and the next one are
separated within a suitable range. If not, it will be nec-
essary to create a new segment.

Resheff76 does a version of maximum distance
between segments radially, integrating also the density
of nearby points. Sheng et al.79 make the same type of
radial distance in a maritime environment.
Opheim102,137 does something similar, but generates a
rectangular area with radial corners, in which, if the
following points are inside, they will be compressed.

A middle term between the two distance approaches
is created by Dead Reckoning, proposed first by
Trajcevski et al.81 Instead of measuring the distance
from the trajectory point to the segment, they establish
a predictive zone where the next trajectory point should
enter, following the trend of the previous ones.
Reumann and Witkam77 had previously defined a simi-
lar concept, where two parallel lines delimit the possible
position of the next one to maintain the current
segment.

Another way to use this distance between consecu-
tive trajectory points is to measure the accumulation
between several of them, taking the length of a given
trajectory. This value can be used to compare, as Cui
et al.63 or Sheng et al.79 do with a maximum segment
length limit.

Finally, there are several approaches that use the
previous distance concepts but measuring other types
of points, which are auxiliary to the trajectory or to the
summarisation process. They use to be relevant geogra-
phical places for the analysis to be carried out, such as
road intersections,25 regions of interest near the trajec-
tory138 or even other trajectories.53 With the knowledge
of this distance, semantic content can be generated to
be exploited in the future.

Angle. The raw geometric representation of trajectory
points allows the generation of more types of metrics
to be used during the summarisation process. The angle
formed by the relevant trajectory points when summar-
ising can be compared with others along the trajectory.

This evaluation method allows to focus the summar-
isation process on the preservation of the most delicate
components of a trajectory, such as the sharpest angles.
There are approaches, commonly called the Direction
Preserve Trajectory Simplification (DPTS), first intro-
duced by Long et al.,60 which aim to provide the best
heuristics to store this useful information about the
vehicle dynamics. As happens in the distance-based
metrics, this metric is also applicable to line simplifica-
tion problems, due to the lack of a time component.

Due to low precision of trajectory data, noise can
generate angles that are sharper than they really are.
This noise is minimised using the already seen distance
metrics but can affect this direction preserving algo-
rithms, preserving such noisy measurements, and dis-
carding the real motion ones. Some specific direction
preservation techniques that take this noise into
account when dealing with the angles.

Long et al.60,87 proposed several optimal and subop-
timal simplification algorithms. Latecki and
Lakämper51 calculate the difference of angles between
the previous and the current direction vector. In this
case the data are points of a line simplification, to pre-
serve the shape and not to blur the edges.

Wang et al.139 use the angle formed by three consec-
utive trajectory points. The angle of the intermediate
position with respect to the other two, called by them
open angle, when it is an angle far from 180 degrees,
represents a sharp turn that must be stored in the sum-
marisation, and calculates the difference of angles
between the previous and the current direction vector.
In this case the data are points of a line simplification,
to preserve the shape and not to blur the edges.

Ke et al.85 propose a grouping of the difference of
the angular values of the vectors, so a change of seg-
ment is applied if several trajectory points show a
course change by the comparison with a threshold. An
example of this algorithm can be seen in Figure 4.
Katsikouli et al.29 perform a different approach, detect-
ing local maximum and minimum angles over time in a
way that preserves them.

Area. Other method brought directly from line simplifi-
cation is the calculation of the area (or a volume if has
three dimensions) formed by a group of points of the
summarisation process.

Visvalingam and Whyatt111 consider this metric to
be more reliable for this type of problem, seeing it as a
grouping of distance and angle. Only those that are fea-
sible according to the angle they form (feasible) enter
the network. However, it has the disadvantage of being
a somewhat more complex and costly calculation to
generate.

It should be noted that the distance metrics that cal-
culate a region in which the next trajectory point must

Figure 3. Trajectory example with PED, SED and consecutive
distance.

8 International Journal of Distributed Sensor Networks



be located are not area metrics. Those regions are visual
representations to observe if the distance is fulfilled or
not, while these calculate a volumetric value to compare
with a threshold.

In a similar way to the angle differences, Pikaz and
Dinstein109 use three consecutive trajectory points to
calculate the area of the triangle formed between them
as a decision criterion. The biggest area central point is
eliminated until a threshold is reached. This process is
illustrated in Figure 5. A similar variant performs
Visvalingam and colleagues.111,140 Later, a modification
of the Visvalingam–Whyatt algorithm that includes
time in the calculation of the area was proposed.110

Another common area approximation is to perform
Minimum Bounding Rectangles (MBR). These are
areas formed by rectangles on a plane, without rota-
tion. The goal of these approaches is to encapsulate all
trajectory points in the fewest number of MBRs, mini-
mising the total area. Liu et al.125 apply it to the plane
while Anagnostopoulos et al.6 do it in a volumetric
way, introducing time as another dimension.

The MBRs are a simplified form to calculate the
area, since only the base and height of the rectangle are
needed. Others62,125 have proposed the metric that rea-
lises the area between the raw trajectory points and
their projection on the segment of the summary trajec-
tory, although this is only used as a criterion for further
analysis, not within the summarisation process.

Velocity. Other way of detecting relevant points in trajec-
tories is the velocity. This metric is completely specific
to trajectories (as there is no temporality in line simplifi-
cation). It should not be confused with SED or TR,
which are distance metrics, although they are adjusted
according to the time of the measurements.

This metric uses velocity to summarise the trajectory,
so it is no longer based solely on position in the plane.
This metric is more informed about the dynamics and
context of the vehicle’s movement, allowing for more
complex, even semantic, analyses. For example, unlike
distance, it can detect high-speed variability due to

acceleration or angular velocity and segment accord-
ingly. In addition, it allows segments to be generated
that, for example, exceed the maximum speed of the
area where they are moving, generating useful context
in other applications.

When Meratnia and De By3 introduced the distance
TR metric, also created the algorithm Opening Window
Spatiotemporal. This algorithm, in addition to using
TR, checked a maximum speed differential to perform
segmenting, since the vehicle when accelerating or
decelerating is in another type of motion. Potamias
et al.75 introduced the algorithm thresholds. It makes a
prediction of the zone in which the next trajectory point
should appear, but specifically takes the speed into
account in the calculation of the valid zone. This
ensures that in addition to following the same direction,
a constant velocity is maintained.

This is also done using the distance, and the
trajectory-point velocity can be compared with the
equivalent point projected on the summarised trajec-
tory segment. De Vries and Van Someren126 use this
approach to detect movements and stops, making seg-
ments to represent this movement.

Another example of the use of speed in summarisa-
tion is that proposed by Lin et al.117 It uses the Gini
index on the velocity values to detect the points at
which the trajectory splits. The higher the Gini index,
the more different the velocity.

Transform. There are other types of techniques that,
instead of using the trajectory points purely for seg-
mentation, they calculate N points that allow, using a
mathematical transformation, to reconstruct a continu-
ous approximation of the original trajectory. An exam-
ple of these evaluation criteria is shown in Figure 6.

These techniques are very common when working
with one-dimensional (1D) time series. For example, in
audio or electrocardiogram data, but not so much in
the trajectories field, which have several dimensions.

However, there is research that tries to apply this
concept to trajectories. Rana et al.30,31 and Yuan

Figure 4. Example of accumulated angle criterion.
Figure 5. Visvalingam–Whyatt area illustration.

Amigo et al. 9



et al.27 propose to use Compressive Sensing, to obtain
the N-values with which to reconstruct the trajectory.
This type of approximation is usually accompanied by
a trajectory filtering process to smooth the trajectory
and eliminate noise, making it more tractable. Yuan
et al.27 use a particle filter, while Li et al.141 apply a
wavelet transform for each dimension of a maritime
trajectory. Long et al.87 also test the wavelet transform
for direction preservation. The fast Fourier transform
(FTT) can also be used as simplification criteria, as
Katsikouli et al.29 did to compare its solution.

However, other investigations use splines, polyno-
mial lines that approximate the trajectory. These, unlike
the previous techniques, are lines that use the N dimen-
sions. Marino and Manic99 generate a continuous
spline that approximates the entire trajectory. Feldman
et al.34 also use splines, but generate several per trajec-
tory, each one representing a segment of the trajectory.

Probabilistic. All the previous techniques develop a spe-
cific analysis based on tangible, measurable, quantifi-
able metrics. In contrast, the techniques of this
grouping perform an analysis with a more complex
algorithm, the results of which are probabilities.

These approaches mostly seek to classify each trajec-
tory point as a specific type of movement. By grouping
in segments according to the type of movement of the
vehicle, more specific segments can be obtained for the
type of solution desired. Depending on the type of
movement, these segments can be further summarised
to reduce the amount of trajectory points.

There are multiple approaches to classify the motion
of a vehicle.142 Siddique and Ban32,33 use Hidden
Markov Model (HMM) to classify trajectory points
according to whether the vehicle is stationary, varying
acceleration or at constant speed. While Garcia et al.35

use an IMM estimation filter to obtain the type of air-
craft manoeuvre, being a solution implemented for air
traffic control.36

Zheng and colleagues127,128 make an analysis of the
type of movement (vehicle/walking) of a person within
the city, segmenting according to it. The analysis is per-
formed with different inference criteria. Feng and
Timmermans143 perform the same type of problem with

a Bayesian Network, having also more types of possi-
ble movements.

Multi-criteria. Finally, many researchers choose to com-
bine several criteria to make a much more robust sys-
tem. This is indicative of the fact that most metrics
alone are not sufficient to model and detect all needs.
In Table 2, those will appear several times.

Researchers perform the joining of criteria in differ-
ent ways. Some perform criteria cascading. First, they
apply a segmentation algorithm, and then, on the seg-
ments found, a technique is applied that finds the most
representative points of that segment. Others perform
all the checks for each criterion simultaneously. Some,
such as the TraClus,66 use a grouped metric evaluates
distance and angle. This follows the Minimum
Description Length (MDL) principle, treating the
problem as a cost minimisation. Several algorithms fol-
low this same principle. Others, such as online data
compression algorithm for trajectories (OLDCAT)26 or
the proposals of Patroumpas et al.73,74 perform differ-
ent decoupled conditions in parallel, by means of a
concatenation of comparisons. These techniques per-
form online compression to simplify the trajectory and
obtaining segments with semantic content.

Something similar is done by Siddique and Ban32

with self-adaptive sampling (SAS) algorithm. It detects
the dynamic variations of the vehicle (constant speed,
stopped, accelerate and decelerate) with an HMM and
use them to segment the trajectory (Vehicle Flow iden-
tification). It also uses a support vector machine (SVM)
classifier to detect if the car is stationary (so it is not a
trajectory, it does not move).

Others combine preserve criteria in several passes
and with a combination of conditionals, such as Feng
et al.115 with speed, distance and angle calculated
through the SED projection; or Gao and Shi94 with
angle and SED. Sánchez-Heres78 does something simi-
lar to compress the straight lines but keep the turns.

The heuristics proposed above decide which points
to select. But, depending on the problem and its char-
acteristics, it may be necessary to slightly modify the
operation of the problem to adjust it. Therefore, several
of the proposals perform an additional analysis when
choosing the trajectory point to preserve. This analysis
is reflected in a weight, a numerical value that can ben-
efit or harm the trajectory points, modifying the final
decision criteria.

Li et al.108 to avoid selecting noisy trajectory points
which introduces the weight concept to impair noisy
trajectory points. While Kulik et al.129 instead use
weights according to the semantic content it wants to
preserve in its compression algorithm. Specifically, it
favours the preservation of major roads, while simplify-
ing non-major roads more.

Figure 6. Transform criteria example.

10 International Journal of Distributed Sensor Networks



Panagiotakis et al.53 and Pelekis et al.144 use a voting
criterion among several trajectories by distance between
them to find the most representative subsegments of the
whole set. Resheff76 does a version of maximum dis-
tance between segments radially, integrating also the
density of nearby points.

Search strategy to process trajectory points

As already mentioned, all trajectory summarisation
algorithms need a strategy to process the raw trajectory
points. The strategy greatly influences the computa-
tional cost of the algorithm. The more basic ones only
need to pass through each point once, while the more
advanced ones increase the order of complexity to a
large extent. According to the problem, different solu-
tions can be applied. The challenge is to find a trade-off
between computational time and quality of the solution.

Throughout the literature, the following subcate-
gories have been found that depend on the strategy used
for processing the trajectory points:

� Sequential: these algorithms follow the simplest
processing strategy, going through the trajectory
points in order, analysing one after another.

� Window: these algorithms are based on the use
of windows that group several trajectory points,
making the decision on the set of points. There
are two main variants: a Sliding Window which
moves along the trajectory, or an Opening
Window that gets bigger and bigger by adding
new points to the evaluation.

A variant of the latter is the use of estimation, which
is slightly different from the previous ones. In this case,
the window checks whether a future estimate of the next
points falls within the window.

� Split: these algorithms are based on a segment
division strategy. An initial segment of the raw
trajectory is created, and it is checked if any tra-
jectory point of the raw trajectory exceeds a
threshold. If so, the segment will be split in two
and the process will continue iteratively.

� Merge: these algorithms are the opposite of the
split-based algorithms. Their objective is to start
from a sequence of segments and merge two of
them consecutive using a threshold criterion.

� Graph: these algorithms are based on the genera-
tion of a graph associated with the trajectory in
which the nodes represent points of the trajectory
and the edges represent the possible segments.

Once the graph is generated, the summarised trajec-
tory is created by finding the best path within the
graph.

� Strategy combinations: these algorithms com-
bine several of the previous strategies to make a
more robust and intelligent approach.

Sequential. Trajectories are like chains, whose behaviour
depends on previous measurements. Therefore, they
should be measured considering the previous and ide-
ally also the subsequent behaviour.

This category passes through all the trajectory points
in the simplest way, only once and in an orderly fashion
through each of them. This strategy is used by research-
ers to analyse step by step whether the trajectory point
should be stored or not (decided by the score provided
in section ‘Trajectory point evaluation criteria’), with-
out making double passes or comparisons by accessing
previous measurements. This criterion allows to obtain
the best possible computation time, but the solution will
have a reduced quality, since it does not make enough
checks as others do.

It should be noted that this procedure is the one fol-
lowed with the proposals that perform external and
probabilistic analysis. It also models solutions com-
posed of many algorithms that need to extract values
initially, for which they make a first pass through all
the measurements.

Techniques that aim to find segments representing a
motion pattern usually employ this approach. This
allows the movement along time to be analysed.
Siddique and Ban32 achieve this through probabilistic
algorithms, while Wang26 does it with a multi-variable
analysis.

Graph. The sequential solution allows a solution to be
found quickly, carrying out an analysis for each trajec-
tory point individually. Even so, such a strategy is not
ideal for any problem, as its analysis does not have the
capacity to contemplate previous situations that could
be positive for the summarisation.

The opposite approach to sequential solutions is the
one proposed by graph approaches. A graph models
the entire search space, meaning all possible possibili-
ties of the problem, to find its optimal solution. Graph-
based strategies achieve an optimal approximation
result but at a higher computational cost than others.

In this problem of summarisation of trajectories, a
Directed Acyclic Graph (DAG) is used, where there is
a predefined direction from the beginning to the end of
the trajectory. The nodes of the graph represent each
trajectory point, while the vertices represent the sum-
marisation performed between two trajectory points,
discarding the intermediate ones (see Figure 7).

Imai and Iri42 proposed a DAG by measuring all
distances between points of a line simplification, find-
ing the optimal solution by minimising the error, but

Amigo et al. 11



the computational costs are too high for any solution.
It was improved according to the type of problem by
Chan and Chin,43 making it feasible for some non-
priority problem.

This type of solutions can also be used to find the
optimal solution without using distances as a criterion.
For example, Long et al.60 implement a DAG that uses
angular deflection to achieve the best possible summar-
isation given a maximum deflection. Long et al.60 also
propose a solution (SP, also known as DPTS) in which
it makes a graph applied to an angle heuristic, so that
it finds the optimal solution.

Optimal solutions are desired in any problem, but in
few problems can they be computed because of their
high running cost. This makes it impossible to use these
algorithms in real-time solutions in any case.

Because of this, some researchers sought to find solu-
tions using graphs capable of achieving suboptimal solu-
tions, but whose computation time was considerably
less. Kolesnikov and colleagues49,65,145 were the first
researcher to introduce the concept of Reduced Search
Dynamic Programming (RSDP) on the simplification
problem. In the search for a balance between optimal
solutions, called Full Search Dynamic Programming
(FSDP) with a reduced computation time. These solu-
tions, instead of generating the entire search space, base
their operation on the limitation of the search space to
be computed from each vertex node.

Initially, Kolesnikov and Fränti145 perform the pro-
cess in a decoupled fashion, initially using a DP to have
a reference solution, and exploring alternative paths for
each node. He then improved his solution by calculat-
ing both the reference solution and the alternatives at
the same instant.49 It used accumulated heuristics as
the already explained ISE. Since then, several research-
ers have opted to follow its path applied to trajectories,
seeking to find suboptimal or hybrid solutions, but fea-
sible for real-time use.

Chen et al.44 were one of the first to apply it to tra-
jectories. His MRPA algorithm uses the accumulation
of the SED distance metric, ISSED, to find the shortest
path. This solution follows the performance of DAGs,
but optimises it computationally using only two queues
with priority. Likewise, this solution requires the com-
putation of all distances before finding the solution,
which still penalises its real-time execution. DOTS, the

algorithm of Cao and Li41 solves this problem, being
able to generate the DAG with ISSED in an online and
incremental way. Wu et al.55 also explore real-time
graph solutions and compare them.

Another more specific type of solution is proposed
by Pulshashi et al.,54 this one is not so much focused on
compression, but on generating segments by eliminating
atypical trajectory points due to noise. To do this, the
DAG it generates introduces, for each trajectory point
k new vertices, to the next k nodes. Moreover, with
these k additional paths per segment, it can develop the
algorithm in real time.

Window. Knowing that optimal algorithms are not a
feasible solution for virtually any solution, many
researchers opted for other heuristic paths. These seek
to find a path by performing without generating a
DAG, but by traversing the trajectory in other ways.
One of these uses a window that limits the search space
to a sequence containing a few trajectory points. This
causes the preservation criteria checks to be performed
only between such measurements, thus making the
checks much fewer.

It should be noted that the sequential concept can
be viewed as a window of size 1. This concept of evalu-
ating all consecutive points makes clear a linkage to be
able to run the algorithm in near real time, having to
store a few measurements to extract results. There are
two types of approaches using the window concept to
traverse the points.

Sliding window. For a particular trajectory point of
the trajectory, N of the neighbours of that point are
selected and the calculations are performed with them.
The placement of the window with respect to the point
can vary according to the algorithm: placing it in an
intermediate way and taking points before and after or
taking only points on one side.

Once the operation of the window is established, the
behaviour of the window depends on the algorithm that
implements it. The trivial algorithm of Tobler130,131 can
be seen as a window of fixed size. The same is true for
the Pulshashi et al.54 with graphs, which generates k
vertices for each point, where k is the size of the
window.

Keogh et al.146 proposed a sliding window imple-
mentation for time series. It checked the error in dis-
tance of the segment formed by the window, with
respect to the intermediate trajectory points. If they
exceed a threshold, it splits, otherwise it shifts the
whole window, discarding them from the summarised
trajectory.

Yan et al.112 instead use the window to find and clas-
sify fragments of the segment according to the type of

Figure 7. Graph strategy example.

12 International Journal of Distributed Sensor Networks



movement. Thanks to the window you can apply it in
real time.

The solution of Muckell et al.,100,101 SQUISH, uses a
window of N measurements. On these N measurements,
it chooses the worst one and eliminates it, inserting the
next one and so on until the trajectory is finished.

Marino and Manic99 use the Window to quickly cal-
culate the direction correlation of the trajectory points.
Finally, Gao and Shi94 use a window on which you
apply several criteria at the same time.

Opening window. Alternatively, the window can be
viewed as a point buffer, where as long as a criterion is
active, trajectory points continue to be entered. When
the criterion is no longer met, the window starts again.
Depending on the implementation, either at the last
point of the window, which is preserved in the summar-
isation, or at the last current point of the summarised
trajectory.

The first reference found in the literature that
applies an opening window is the proposal by Shatkay
and Zdonik,147 applied over time series. Although the
main author of this approach is Meratnia and De By,3

which introduced the name of this concept, opening
window. In addition, Meratnia and De By3 differen-
tiated between two variants, whether to stay with the
point that exceeds the window, or the point just before
(Normal OPW), where the window has not been
exceeded (Before OPW). Another variant to find the
specific point is that of Meng et al.,70 which after
applying the window with a criterion, uses a cumulative
SED distance to find the exact point to store in the
summarisation, and continues from there.

Many researchers followed this type of trajectory
approaches, for example, Lee et al.66 and Sheng et al.79

The segments are then generated with their multi-
criteria metrics, until it exceeds a threshold. The same
is done by Liu et al.89 using speed as a criterion.

Direction estimation algorithms are also related to
opening windows. The algorithms fix an orientation
and all points that fall within this window are not
selected for the summarised trajectory. As this enters
algorithms such as Reumann and Witkam77 establish-
ing two infinite parallel lines, Opheim102,137 with a
delimited area or even Dead Reckoning81 and its var-
iants Connection-Preserving Dead Reckoning
(CDR),50,148 which also recalculate the intermediate
points of the window at each iteration, in case it moves
far enough away from the current point vector.

Kolesnikov65 does something similar, setting an area
where the point can be as a prediction, and the follow-
ing points must be within it. In addition, thanks to the
window, it performs the combination of the areas of
past points, obtaining a more accurate estimate.

Split. Another strategy to go through all the points
quickly is the Split method. This method is based
on Dynamic Programming, generating a recursive
way of dividing the global problem, and solving it in
smaller pieces. Also known as divide and conquer, or
top-down, the objective of this strategy is to split the
trajectory by the most relevant point according to a cri-
terion. With this process, two subsegments are gener-
ated, one from start to the selected point, and the other
from this point to the end. These two segments, in turn,
apply the same problem again, generating the recur-
sion. In this way, the trajectory is segmented until it
reaches a previously established limit. This approach
gives fast results, but its way of traversing the trajectory
points prevents it from working in real time since it
needs to process the whole trajectory.

The most known algorithm of summarisation,
Douglas and Peucker114 (DP), uses this strategy with a
PED distance threshold. Thanks to it, multiple
researchers have tried to improve it. For example,
Hershberger and Snoeyink116 proposed a variant with
the same result but faster, called DP-hull.

The algorithm Scan, Pick and Move (SPM)120 is a
variant similar to DP, but instead of generating two
segments on which it is necessary to reapply the algo-
rithm recursively, it keeps fixed the first of the two seg-
ments generated, applying recursion only on the second
segment. This provides on long trajectories a faster
solution, but at the same time the result will be worse
and does not guarantee a maximum error.

Like all strategies, the split-based can also imple-
ment any type or combination of point preserving cri-
teria. For example, Liu et al.125 use it to minimise the
area of the MBRs that encompass the trajectory points
of a trajectory.

Merge. The opposite way to Split can also be applied
on trajectory data. Instead of starting from the general
problem and going to multiple specific problems and
finally joining the solutions, the merge algorithms start
from multiple specific problems and arrive at the solu-
tion of the general problem. This strategy is also consid-
ered as Dynamic Programming, it starts with segments
of few trajectory points and the algorithmic process
oversees finding which pairs of segments can be joint
together in bigger ones.

This process is also known as Bottom-up, or elimi-
nation, because, when joining segments together, there
is a trajectory point that is discarded. Unlike the Split
strategy, this one can be applied in real time with sev-
eral nuances.

Pikaz and Dinstein109 performed the first appear-
ance of Bottom-up in this type of problems, applied to
polygon approximation. Hunter and McIntosh149 also

Amigo et al. 13



applied it in time series. Visvalingam and Whyatt111

apply this concept also with an area criterion. It starts
with trios of trajectory points and eliminates the inter-
mediate point of each trio when it has the least area of
the whole trajectory. In this way, the trio that has been
eliminated disappears, and the others are modified,
using the closest point that has not been eliminated.

In trajectories it is possible to highlight, SQUISH100

and its improved version SQUISH-E101 which are two
of the recent algorithms with the greatest impact in the
literature. Both use a merge strategy, mixed with a slid-
ing window to minimise the SED distance. The algo-
rithm is highly configurable and can be set to minimise
the error while maintaining a specific compression
ratio, or the opposite, to maximise the compression
ratio while keeping the error below a specific value.

Another similar solution with merge strategy and
window is the one performed by the algorithm
STTrace.75 It first fills a buffer and then removes the
one with the worst SED. Li et al.108 also execute a
merge strategy, eliminating the points with the highest
weight, calculated in a multi-criteria way.

Strategy combinations. Finally, as is also the case in tra-
jectory point preserve criterion, strategies can be com-
bined with each other to realise solutions with different
objectives. In Table 2, those will also appear several
times.

The need for graph algorithms to limit their compu-
tation time in order to achieve a suboptimal but fast
computational solution was discussed earlier. This
effect is repeated in other types of strategies, already
more efficient than a hybrid graph, achieving an imple-
mentable solution in IoT boards or low-cost beacons.
The opposite effect can also be sought, to find a more
specific solution with a more refined result.

Some apply the different strategies at the same time,
supporting each other. Sliding Window And Bottom-
up (SWAB) is one of the oldest combinations found in

the literature. Keogh et al.4 proposed that union
between a window and merge strategy, where the slid-
ing window incorporates points until it fills a buffer,
and merge empties the buffer, selecting the most rele-
vant points.

Another interesting mix is the one performed by Liu
et al.,125 where it starts from segments of fixed size
(number of trajectory points that make up a segment).
On them, apply Split or Merge according to the size of
the segments, until the MBR area is minimised. The
already mentioned SQUISH-E101 and STTrace75 are
also examples of a combination of merge strategy with
a window that limits the amount of information to be
processed.

Other approaches do decoupled cascading during
execution. These detect, for example, when to store a
point, so that a later analysis selects which of the points
to store. This is the case of Meng et al.,70 who first
applies an opening window until an SED distance
threshold is exceeded, but once the threshold is trig-
gered, finds the point to be preserved in Split form,
with a different metric.

The same happens in the Generic Remote Trajectory
Simplication (GRTS) algorithms proposed by Lange
et al.148 It uses the CDR algorithm to detect the
moments to send points, using an opening window
strategy. Once out of the threshold, apply another,
more accurate algorithm to compress the fragment. It
can even run high computational time algorithms
online, by reducing the number of measurements it
must process. GRTSOpt uses an optimal algorithm
such as Imai and Iri,42 whereas GRTSSec uses a heuris-
tic solution OPW-TR.3

Finally, the algorithms that perform the cascade in a
totally decoupled way. They first make a pass with one
strategy and with the results, apply another or other
strategies with which to achieve summarisation. A typi-
cal cascade approach is by first carrying out a sequen-
tial run that extracts values from the trajectory, and

Table 3. Special approaches table.

Special approach Techniques

Multiple trajectory compression Similarity,113 TrajStore,151 Representativeness,53 NaTS144

Lossless trajectory compression PRESS,25 COMPRESS,96 CoTracks,90 Trajic,52 TrajStore,151 IFC,152 Lovell,12,153 LWZ154

Network road constrained PoI and PoIE,61 Nonmaterial,155 VTracer,58 TSHL,63 OGPC and OSPC,47 Opheim-
improved,95, RSLC and TSLC,96 CFF,64 MMTC-offline and MMTC-online,48 FFDP and
FFUS,97 GS,108 IC-MBR,125 SUTC,89 INCM,118 STTrace and Thresholds,75 ESTC-EDP,119

STC,22 BTC and HTC,25 STMaker,103,104 SNDSC,122 CLEAN57

Semantic segments PoI and PoIE,61 TS,127,128 2stage-pls,126 IMM,35–37 OGPC and OSPC,47 FFDP and FFUS,97

S-DMin and SE-DMin,129 ATS,117 SMoT,71 CB-SMoT,21 Patroumpas,73,74 STC,22 RGRASP-
SemTS,24 BTC and HTC,25 STMaker,103,104 SELF,121 SetraStream,82 HESAVE and SNDSC,122

SPD84

14 International Journal of Distributed Sensor Networks



then, using these, other algorithm is applied to select
the measurements.

Hansuddhisuntorn and Horanont17 use this
approach to reduce the number of trajectory points to
be introduced into an algorithm, so that it is less com-
putationally expensive. First, it makes a sequential
strategy to choose only relevant points in velocity or
angle, and those it inserts into the algorithm Top-
Down Time Ratio (TD-TR).3

Lee et al.150 make two forward passes. First, it does
a coarse partitioning of trajectories separately (using
TraClus). Then, with the trajectories potentially out-
liers, it makes another more specific segmentation by
pairs of distinct trajectory segments.

Another example of the use of velocity in summari-
sation is proposed by Lin et al.117 As is shown in Figure
8, its algorithm uses the Gini index on the velocity val-
ues to detect the points at which the trajectory splits.
The higher the Gini index, the more different is the
velocity. Then, with the velocity values, find the error
threshold to use from PED in a DP to compress for
subsegment.

DOTS-CASCADE41 applies the DOTS algorithm N
times by parallelising the network computations, so
that it can run in real time. A similar approach follows
Siddique and Ban32 using first HMM to locate the
important points and then SVM for stops. Other algo-
rithms are based on applying several passes (each pass
following a procedure different from the rest) on the
trajectory points to acquire knowledge that cannot be
obtained by means of a single pass.

Within this last category, a common operation can
be identified: algorithms that perform passes of the
same algorithm in both directions of the trajectory. One
pass from the beginning to the end, called forward, and
another in the opposite direction, called backward. This
type of strategy is common in probability algorithms,
but since there are probabilistic criteria for preserving

trajectory points, it allows a more detailed analysis of
the target’s behaviour. Although the concept comes
from there, some researchers use it to refine the seg-
ments without techniques that work with probabilities.

Garcia et al.35 use an estimation filter called IMM,
the result of which lets you know what type of motion
the target is performing. If set correctly for a particular
type of vehicle, this filter can estimate by probability
the type of motion the vehicle is making. The forward
pass is responsible for detecting the beginnings of a
motion segment, while the backward passes detect the
ends. Their union allows to generate informed segments
categorising straight, turning, stationary and so on
movement.

Liu et al.98 perform a double pass in time series,
where the first Feasible Space Window (FSW) finds the
segments following a distance criterion and a sliding
window strategy. Then, the backward pass, Stepwise
FSW, retouches the position of the segments reducing
the representation error of the initial segments of the
FSW. This approach allows to make a final pass when
the trajectory is completed, so that in real time the seg-
ments are suboptimal, but when finishing and storing
the results, they are improved with the backward seg-
menting process.

The same objective has Kolesnikov65 with its Scan-
Along Trajectory Approximation (SATA) algorithm,
explained above. By accumulating the areas found by
means of an opening window, it guarantees a minimum
of error. However, this single pass can be improved by
performing another pass in the opposite direction,
applying the same window now in the other direction.

Tang et al.80 and Etemad et al.91 use a double-pass
approximation in a different way. For certain trajec-
tory points, it applies the double-pass concept along a
sliding window. With this it checks the velocity (Tang)
or the direction (Etemad) of several points before and
after to improve the detection. Tang later applies an
improved DP for segmentation.

Finally, as summary of this section, Table 2 indi-
cates where each of the algorithms studied in the litera-
ture are located accordingly to the categories proposed.
Notice that some of them combine several criteria to
make more robust solutions, and for that reason, they
appear in several places in the table.

Special approaches

Within the trajectory summarisation literature
reviewed, in addition to all the groupings above, some
special approaches to the problem have been found.
These still aim at reducing the dimensionality of the
trajectory, but they have an additional motivation that
makes their implementation peculiar. The most rele-
vant of these are explained as follows:

Figure 8. ATS117 algorithm illustration. Multi-criteria by
cascade.

Amigo et al. 15



� Multi-Trajectory Compression (MTC): instead
of compressing each trajectory individually, they
try to take advantage of the knowledge coming
from the existence of multiple trajectories in rela-
tion to each other.

� Lossless compression: these algorithms stand out
for generating the summarised trajectory without
any loss of information, being possible to recover
the raw trajectory from the summarised one.

� Road networks constrain: these algorithms stand
out for being specially designed to be used in
conjunction with context information from the
road network from which the information has
been taken.

� Semantic approach: these algorithms are notable
for including and using semantic information,
extracted from the applicable problem, when
generating the summarised trajectory.

This categorisation is shown in Table 3 and also at
website.15

MTC

Trajectories usually have a predetermined destination,
and, if such a trajectory takes place with a certain fre-
quency, it usually has the same path that is followed to
get from one point to another. These trajectories predo-
minate in urban land navigation, where almost all vehi-
cle movements are on roads or at least dirt roads. In
places where movement is not restricted, such as mari-
time navigation or air traffic, and although less so, a
series of prefixed paths are also usually followed on
long routes.

There are several approaches that seek to exploit this
redundancy of trajectories on the same path to maxi-
mise the summarisation and compression of a trajec-
tory. The objective is, instead of compressing each
trajectory individually Single trajectory compression
(STC), like all previous techniques, to try to exploit the
knowledge of existing trajectories with similar shape
and dynamics. In doing so, solutions can reduce dimen-
sionality abruptly, going from hundreds of redundant
trajectories in shape, to storing only one that represents
all of them.

These approaches are usually more related to a com-
plete framework for a posteriori analysis, or clustering
techniques, as they require multiple refined trajectories
ready to be processed and compared with each other.
TrajStore151 was the first approach to do MTC. It
groups virtually identical trajectories by clustering,
comparing the trajectories with each other using simi-
larity metrics. When it identifies a cluster, it uses one of
the trajectories in the cluster as a representative of that
group, saving the storage of the N trajectories.

Birnbaum et al.’s113 technique generates segments
for each trajectory using a lossy STC algorithm, and on
the other hand tries to represent the trajectory with sub-
segments of other trajectories already stored. The form
that minimises the error will be the one that stores, if
the new segments obtained with the compression STC,
or it will use the already existing ones in the MTC. It
also minimises the replicated information, namely, by
storing the start and end time of each segment, since all
the intermediate positions can be interpolated from the
base segment. In addition, the successive points store
only the gaps between measurements and time, not the
complete value, to reduce space. This facet is usually
related to lossless compression, which is more oriented
to databases.

Zheng and colleagues28,156 propose a framework
that first eliminates the redundancy of multiple trajec-
tories, keeping only the priority segments, and then
compresses each segment separately. To do so, it uses
similarity metrics, which compares all trajectory points
of both segments with each other.

Likewise, any trajectory subsegment clustering tech-
nique, such as TraClus,66,157 could be applied to this
criterion. Panagiotakis et al.53 and Pelekis et al.144 use
a voting criterion among several trajectories by distance
between them to find the most representative subseg-
ments of the whole set.

Lossless compression

One of the most common characteristics of summarisa-
tion algorithms is the loss of information suffered with
the compression of trajectory points. This means that
the algorithms manage to generate segments containing
new information based on the original measurements,
although the generated segments do not represent the
original information. This approach is the most com-
mon and is called lossy.

However, there is another approach in which the
information is compacted without degrading it. This
approach, called lossless, makes it possible to preserve
the original information while occupying as few bytes
as possible. In addition, it must ensure that all the pre-
cision of the raw trajectory is recoverable. This type of
approach usually gives little importance to the sum-
marisation part and focuses entirely on data reduction,
although some techniques do exploit the characteristics
of the trajectories.

The simplest example to understand the difference
between lossless and lossy compression is to switch to
another domain. Images can be lossy compressed into
JPEG files, which achieve a very high compression
ratio, but generate artefacts in the image that do not
exist. However, if compressed in PNG files, lossless
compression is achieved in each pixel of the image,
although with a lower compression ratio.

16 International Journal of Distributed Sensor Networks



Lossless bases its operation on structuring the data
in a more efficient way, so that the information is com-
pressed. In addition, it looks for redundant patterns in
the information to save space. Transforming the data
to such a structure requires extra computation time,
and the same for decompressing it again to obtain the
original path. These techniques have disadvantages,
such as making it difficult to access the trajectories with
such intermediate computation, but they have advan-
tages, such as storing the same original trajectory at a
lower space cost, useful for long-lived databases.

Lossless compression is a commonly practised term
in computing. In fact, the Consultative Committee for
Space Data Systems (CCSDS)158 proposes recommen-
dations and sets the standard for how a lossless com-
pression algorithm should work.

There are two types of lossless algorithms: the gen-
eric ones, applicable to any type of computer file with a
decent compression ratio. The other approach is to
develop a specific solution for the data to compress.
Like in the mentioned example with image data, it is
possible to develop a specific proposal to deal with tra-
jectory data. Below, solutions in the latter category are
presented.

Hatanaka159 eliminates redundant information, stor-
ing only the gaps between measurements, reducing
information by up to 80%. Song et al.25 propose
PRESS, a map-matching framework with both trajec-
tory summarisation modes: lossless and lossy. Then,
Han et al.96 proposed COMPRESS that starts from the
base proposed by Song and improves it different fields.

TrajStore151 compresses the trajectory by clustering
and saving a representative of each cluster. Later,
Trajic52 claims to have outperform TrajStore approach.
Trajic’s paper also develops a different lossy solution,
based only on bits encoding.

There are even proposals to combine both forms of
compression as Balzano and Del Sorbo90 does: first a
lossy compression is perform. Then, with the selected
trajectory points, a lossless compression, so they occupy
as little space as possible.

Lovell12,153 has recently made several approaches
seeking to exploit kinematic values to perform lossless
compression. In addition, the paper provides a clear
overview of the lossless trajectory compression status.

Semantic segments

Many approaches in the literature, especially recent
ones, aim at generating segments that represent con-
crete information. These are called semantic knowledge.
The trajectories are compiled by GPS sensors, giving a
position over time, moving over the Earth. These, in
computational form, are tuples of numbers with several
decimals, which a human being is not able to under-
stand, at least, without a previous study of the problem.

Therefore, with the aim of making applications for a
non-expert public, the transformation of this numerical
information into tangible, legible, explainable knowl-
edge is a very well-studied and necessary problem for
any application. This knowledge is obtained by means
of artificial intelligence techniques, capable of analysing
the behaviour of thousands of trajectories and knowing
how to differentiate a specific aspect of each one of
them.

This review considers the semantic content in trajec-
tories in two ways: first, by generating self-explanatory
segments, according to the type of movement the vehi-
cle performs. Or second, by generating additional infor-
mation related to the geographical context through
where the trajectory runs.

OLDCAT,26 Patroumpas et al.,73,74 Siddique and
Ban32,33 or Garcia and colleagues35–37 are authors of
approaches that detect the change of trajectory motion
type. This implies that they are able to identify the type
of motion between two points of change, categorising
segments with a particular type of motion.

Previously some algorithms were mentioned aiming
to find the start-stops points of the trajectory and com-
pressing with it. These approximations are semantic
content. Zheng et al.84 apply clustering of individual
trajectory points to detect stay points. Alvares et al.71

did something similar, but the detection is done seman-
tically, by placing an area of interest to monitor. When
more than one time threshold is found within the area,
it is a stop. Between stops, there is movement. It detects
interesting trajectory points on ships from the angle of
rotation between measurements using clustering. They
found this algorithm useful to identify fishing spots.

Tamilmani and Stefanakis121 use the Semantically
Enriched Line simpliFication (SELF) structure to store
semantic content, aside from position and time. It spe-
cially compresses the semantic content by angle and
velocity, allowing it to be interpolated if necessary.

Richter et al.22 propose a compression in road net-
works using map-matching, but, unlike the previous
ones, it does not store the positions where it is located,
but stores the name of the streets it travels, a more
understandable way for the human. With this informa-
tion, it is still possible to decompress and find the real
trajectory, together with the time. Su et al.103,104 take it
one step further, summarising the trajectory in natural
language: its crossing points, average speed in each seg-
ment and so on.

Road network constrained compression

There is another type of approximations when the tra-
jectory occurs in a network of roads that limit the tra-
jectory performance. Here the problem of GPS noise is
accentuated, appearing noisy trajectory points that go
out of the trajectory, being necessary a previous

Amigo et al. 17



iteration that adjusts these points to the corresponding
road. Subsequently, with the points already adjusted to
the road, the segmentation/compression algorithms use
the context of the road, mainly the intersections, to
approximate the trajectory.

Moreover, with the concept of roads, it is not neces-
sary to represent and store the shortest path between
two points, but it can be inferred a posteriori if needed,
since the possibilities are reduced. This problem could
be done with Naı̈ve solutions, combining the two algo-
rithms: Kellaris et al.48 propose to do compression and
then map-matching. Or applying map-matching first,
with the points on the road, compress, and then map-
matching to the road but taking up less.

Non-material155 was the first to combine trajectory
compression and trajectory map-matching. His solu-
tion separates the spatial trajectory, which can be extra-
polated from roads, from the temporal component,
which belongs to each track. The spatial compression
stores the crossing intersections and the temporal gaps
between intersection pairs.

Map matched trajectory compression (MMTC)48

uses subtrajectories through fewer intersections to
replace parts of the original trajectory. Some specific
evaluation functions are introduced during the com-
pression to guarantee the similarity between the com-
pressed trajectory and the original one. The compressed
trajectory consists of fewer intersections; thus, the stor-
age cost is reduced.

Gotsman and Kanza47 proposed several ways to per-
form compression in road networks. Using graphs, it
finds the shortest path (highest compression), knowing
that it can then redo the path (since the path can only
pass through the available roads) looking for the short-
est path between both compression points. It proposes
optimal and even online solutions.

Li et al.108 work offline, taking into account the confi-
dence in the GPS measurement, so it eliminates outliers.
It applies the compressor first and then does map-match-
ing, so it does not link the two phases. Something similar
does Cui et al.63 which first segment with angle and
length and then fit the segments to the road.

Liu et al.89 first do map-matching and then check if
the speed is adequate and applies lossless compression.
Popa et al.118 propose another compression method
with deterministic error bounds and an error measure
for in-network trajectories. It assumes that the noise
path has been cleared, and all the points are already on
the road.

Other characteristics

As mentioned previously, a literature review with a
good number of papers will detect several common
characteristics. In this section, they will be introduced

and its significance in the most recent studies will be
explored. In particular, the following characteristics
have been identified:

� The ability to segment in real time as soon as the
data are available. There are two possibilities,
batch mode implies that the complete trajectory
data are available after the entire trajectory has
been traversed. The online mode means that the
data are available in real time, as each measure-
ment is taken, the data are passed to the algo-
rithm for processing.

� The type of input data implies the level of trajec-
tory information used. That is, the time compo-
nent of the trajectory is taken into account, or
only the shape of the trajectory.

� Finally, due to the flexibility and complexity of
these algorithms, it is explored if it is necessary
to adjust their parameters accordingly to the
problem and the type of trajectories to be
summarised.

Like the other classifications, all algorithms are also
categorised according to these features. Available at
website.15

Real-time operating

There were two main ways of approaching an algo-
rithm to process data, depending on the availability of
the data, it is possible to work in real time as new data
appears or offline after all the data have appeared.
Working with trajectory data, an offline or batch algo-
rithm, because of its way of processing data, requires
all the trajectory points from the beginning of the exe-
cution. Having all the information from the beginning
allows them to provide potentially optimal solutions to
the problem. Meanwhile, a trajectory point buffer can
operate in real time, delivering results as more measure-
ments arrive. This needs to provide results in real time
means that they cannot claim to find the optimal solu-
tion. They must perform a trade-off to obtain a good
solution within a computation time that allows process-
ing measurements faster than the time in which new
measurements arrive.

Both approaches are useful in a problem as broad as
trajectory analysis, which has so many possible uses.
For example, in a big data environment, where all the
available information from millions of trajectories is
available, a batch solution will be preferred, potentially
with better results. However, there are use cases where
the solution must use an online algorithm. For example,
when monitoring a target using a mobile device, it is
necessary to process the detections and obtain results in
seconds with which to make informed decisions. There
is also a middle ground, and it should be considered,

18 International Journal of Distributed Sensor Networks



when the entire trajectory is available, but the solution
has to be delivered with a relatively low delay.

The original line simplification algorithms did not
require immediacy in the results to be obtained, as they
were static data with hardly any online use cases. In
addition, the sensors were less accurate and the amount
of information per trajectory was limited. Therefore,
most of the algorithms in the literature were batch.

Starting in the 2000s, trajectory summarisation algo-
rithms began to be developed. Initially, they start from
line simplification algorithms, but due to the technolo-
gical advance, other uses have been generated and the
literature has covered them. Nowadays, there are many
more and more accurate ones. The use cases of these
technologies are looking for online solutions that pro-
vide segments that represent additional information,
beyond the mere compressed line. The accuracy and
redundancy in a trajectory are so high that it is not so
much necessary to maintain it, and have it taken up less
space on the device, as it is to extract useful informa-
tion for various contexts.

This needs to have solutions as soon as possible has
led to a recent trend where researchers try to exploit all
the computational characteristics of the devices where
they implement their solutions. Currently, processors
have multiple cores that allow parallelisation of compu-
tation. Others even have dedicated components for
high-performance tasks, such as artificial Intelligence
(AI)-specific cores or graphics processing unit (GPU)
cards with thousands of cores. This parallelisation
should be in the design of the online and offline com-
pression algorithms of the future and can accelerate
very expensive implementations by many orders of
magnitude. Some examples of the parallelisation are
the Patroumpas et al.73,74 approaches, graph speed-up
by Deng et al.,59 Feldman et al.34 or Huang et al.,160 or
the spin line detection of Feldman et al.34

Input data

Related to the evolution of the techniques over the
years is the evolution of the type of data used by the
summarisation algorithms. Most of the techniques ini-
tially developed were designed and tested by their
authors for two different problems: time series, that is,
a variable over time, or line simplification, that is, posi-
tion only, without time. These were used as the basis
for this new branch of research, which relies on the
union of position and time.

There is a trend where summarisation algorithms
are moving away from using only the trajectory form,
making solutions that could also work for line simplifi-
cation problems, and are incorporating all kinds of
additional variables. The first step was to introduce the
time component in the calculation to summarise the

trajectory, since it is as or more important than the rest
of the variables.

The current trend is to try to add another type of
semantic knowledge to generate representative seg-
ments, both context of the segment with respect to the
rest of the trajectory, and of the environment through
which it moves, or the difference with respect to other
vehicles travelling through the same area.

An important factor for the correct development of
trajectory simplification algorithms in the future is that
they correctly take time into account. Algorithms that
do not consider time and are based solely on shape are
outdated for most of the analyses to be performed.
They are clearly inferior for any trajectory problem.

Need to adjust parameters

Most of the summarisation algorithms have parameters
that can be adjusted to obtain a correct performance.
For this, an analysis of the type of trajectories to be
simplified, the characteristics of the algorithm and each
parameter is necessary before running it.

Most of the works presented above perform the
adjustment of parameters by hand by trial and error,
making modifications of the parameters until an accep-
table solution is found that represents a local optimum.
Some examples are Zhao and Shi161 or Amigo et al.162

which perform an empirical manual analysis of the
threshold fit to find the best segmentation.

However, some algorithms do not perform a manual
study but have an automatic and unsupervised adjust-
ment of the parameters. Liu et al.20 automatically fit it
inside a DP, for the maritime context. Something simi-
lar can be observed in the study of Zhang et al.163

Many parameters to make it work properly. Some
researchers use multi-objective evolutionary techniques
to fit the parameters within their problem.164,165

In Shuang et al.’s166 solution, an automatic speed
threshold is calculated within segments for anomaly
detection. While Wei et al.’s107 solution uses statistical
theory is applied to determine thresholds for course var-
iation and speed variation.

Soares et al.23 use MDL to avoid the use of thresh-
olds. This solution selects N points randomly as repre-
sentative points, similarly to a clustering approach, and
automatically adjusts itself by means of the cost func-
tion formulated with MDL.

Summarisation evaluation

Since there are so many algorithms and approaches
that summarise trajectories, it important to analyse the
performance of each algorithm in the different prob-
lems, being capable of comparing them to select the
most suitable for each case.

Amigo et al. 19



Some of the articles reviewed do not make any eva-
luation of the performance of the algorithm, especially
when summarisation is merely a step towards another
end purpose. This practice is undesirable. It is essential
to always be informed whether the segments met the
qualitative and quantitative needs of the next step in
order to guarantee the results will be achieved. This
work analyses which metrics they use to evaluate its
work, against which algorithms they compare its solu-
tion and which type of trajectories data is used as input.

Metrics

For the evaluation, many evaluation metrics have been
used in the reviewed literature that check how well a
compressed trajectory (or the generated segments)
approximates the real trajectory. Those metrics can be
divided into the following categories:

� Summarisation meta-information: metrics that
compare the raw and summarised trajectories
regardless of the trajectory factor. Metrics such
as compression ratio or bytes reduction are
metrics in this category.

� Algorithm computational complexity: these
metrics seek to measure the computational effi-
ciency of each algorithm, by checking the execu-
tion time or memory consumption.

� Error metrics: metrics that calculate an error
residual between the actual trajectory and the
summarised trajectory. The most common way
is to adopt the trajectory point preserve criterion
used alongside a statistic values (average, maxi-
mum, etc.).

� Similarity metrics: using specific metrics that
compare two trajectories (or segments) to see
how different they are. Some works use this
metrics comparing the real trajectory and the
summarised one.

Comparison to other algorithms

This article also explores how works benchmark their
results against others in the literature. This is the only
way to demonstrate if an algorithm performs well or
not for a specific problem (the problem described on
each paper).

Most papers do not compare themselves against
other algorithms in the literature, showing only the
results they achieve. This lack of knowledge of the
existing literature on the problem means that many
researchers consider its approach innovative when it is
possible that previous work did it earlier. Moreover, it
is possible that another algorithm in the literature can
perform better for the same problem. Column
‘Comparison to other algorithms’ on the website15

shows the comparison provided in the paper that intro-
duces each algorithm.

This review provides an initial overview of multiple
existing approaches in different categories, facilitating
the decision of with which algorithms a future work
should be compared. Also, a set of highlighted algo-
rithms is also provided in the introduction according to
the type of solution desired.

Data sets used

A proper evaluation of a summarisation algorithm
requires that others can evaluate their algorithms on
the same set of trajectories and benchmark it against
them.

Throughout the literature, there is a clear predomi-
nance of trajectories in cities. This is logical, as this is
the domain where the majority of travel occurs for
humans. This also leads to the existence of many spe-
cific algorithms for such trajectories. Some algorithms
use real experiments with their own data, but several
public data sets stand out in the literature.

GeoLife167 is a data set that is developed in a city,
with trajectories categorised according to the motion
method: vehicles, bicycles or people walking. Data sets
of taxis or trucks moving through a city are also com-
mon. Data sets of taxis28 or trucks62 moving through
road networks are also common.

Other researchers use ship data. AIS technology is a
simple approach to data set generation, as it is an open
standard by which ships are required to communicate
their position. There are multiple data sets that collect
information from AIS detections in specific areas.168

These data also incorporate contextual information
such as ship type or destination, allowing for easy post-
summarisation analysis.126,169 There are other types of
trajectories that are less used but noteworthy. Among
them, there are some hurricanes data sets,91 with a
more limited amount of information, but with very dif-
ferent behaviours from the rest of the trajectories.
Finally, the trajectories of tracking animals: such as
deers60 or bats.68

Conclusion

In this article, an overall review of trajectory summari-
sation algorithms was provided, merging both compres-
sion and segmentation concepts in a same perspective.
This type of approach has not been explored in any of
the existing surveys available in the literature.

The concept of summarisation and its application in
different use cases has been introduced. These have two
main motivations: the need to shrink or simplify the
trajectory to lighten the workload of further algorithms
or to extract more knowledge from the trajectory.

20 International Journal of Distributed Sensor Networks



Two main categories were found to group the more
than 160 algorithms found in the literature: the search
strategy for the trajectory points and the criteria to
decide which of them to preserve in the summarisation.
Distance as a preserve criterion is the most used, while
the strategy algorithms that have been found are all
balanced.

Throughout the study, certain special trends were
discovered, which were analysed in detail. MTC,
Lossless or Road network constrained solutions focus
on higher compression, while semantic approaches aim
at generating additional context for the segments.

Finally, additional classifications are made on all the
analysed algorithms, from other points of view. For
each one, the evolution of the algorithms over the years
is explained and those trends that should be further
explored in future works are highlighted. All of these
categorisations, which allow algorithms to be compared
with each other, are available on the website.15

Declaration of conflicting interests

The author(s) declared no potential conflicts of interest with
respect to the research, authorship and/or publication of this
article.

Funding

The author(s) disclosed receipt of the following financial sup-
port for the research, authorship and/or publication of this
article: This work was funded by public research projects of
Spanish Ministry of Economy and Competitivity (MINECO),
reference TEC2017-88048-C2-2-R.

ORCID iDs

Daniel Amigo https://orcid.org/0000-0001-7138-5508
David Sánchez Pedroche https://orcid.org/0000-0001-
8912-5165

References

1. Zheng Y. Trajectory data mining: an overview. ACM T

Intel Syst Tec 2015; 6(3): 1–41.
2. European GNSS Supervisory Authority. Power-efficient

positioning for the Internet of Things: merging GNSS with

low-power connectivity solutions (white paper). Luxem-

bourg: Publications Office of the European Union, 2020.
3. Meratnia N and De By RA. Spatiotemporal compression

techniques for moving point objects. In: Bertino E,

Christodoulakis S, Plexousakis D, et al. (eds) Advances in

database technology (EDBT 2004). Berlin; Heidelberg:

Springer, 2004, pp.765–782.

4. Keogh E, Chu S, Hart D, et al. An online algorithm for

segmenting time series. In: Proceedings of the 2001 IEEE

international conference on data mining, San Jose, CA, 29

November–2 December 2001, pp.289–296. New York:

IEEE Computer Society.

5. Meratnia N and De By RA. A new perspective on trajec-
tory compression techniques. In: Proceedings of the

ISPRS commission II and IV, working groups II/5, II/6,

IV/1 and IV/2 joint workshop on spatial, temporal and

multi-dimensional data modelling and analysis, Quebec
City, QC, Canada, 2–3 October 2003, 8 pp. Nice: Inter-
national Society for Photogrammetry and Remote Sen-
sing (ISPRS).

6. Anagnostopoulos A, Vlachos M and Hadjieleftheriou M,

et al. Global distance-based segmentation of trajectories.
In: Proceedings of the 12th ACM SIGKDD international

conference on knowledge discovery and data mining

(KDD’06), Philadelphia, PA, 20–23 August 2006, p.34.
New York: ACM Press.

7. Fu T-C. A review on time series data mining. Eng Appl

Artif Intel 2011; 24(1): 164–181.
8. Lovrić M, Milanović M and Stamenković M. Algorith-

mic methods for segmentation of time series: an over-
view. J Contemp Econ Bus Iss 2014; 1: 31–53.

9. Feng Z and Zhu Y. A survey on trajectory data mining:
techniques and applications. IEEE Access 2016; 4:
2056–2067.

10. Sun P, Xia S, Yuan G, et al. An overview of moving
object trajectory compression algorithms. Math Probl

Eng 2016; 2016: 6587309.
11. Da Silva CL, Petry LM and Bogorny V. A survey and

comparison of trajectory classification methods. In: Pro-

ceedings of the 2019 8th Brazilian conference on intelligent

systems (BRACIS), Salvador, Brazil, 15–18 October
2019, pp.788–793. New York: IEEE Computer Society.

12. Lovell DJ. Kinematics-enabled lossless compression of
freeway and arterial vehicle trajectories. J Intell Transport

S 2019; 23(5): 452–476.
13. Ribeiro de, Almeida D, de Souza Baptista C, Gomes de,

Andrade F, et al. A survey on big data for trajectory ana-
lytics. ISPRS Int J Geo-Inf 2020; 9(2): 88.

14. Wang S, Bao Z, Culpepper JS, et al. A survey on trajec-
tory data management, analytics, and learning, http://
arxiv.org/abs/2003.11547 (14 December 2020, accessed
31 March 2021).

15. Amigo D. Trajectory summarization review analysis,
https://danielamigo.github.io/trajectorySummarisation
Review/

16. Guo T, Yan Z and Aberer K. An adaptive approach for
online segmentation of multi-dimensional mobile data.

In: Proceedings of the 11th ACM international workshop

on data engineering for wireless and mobile access

(MobiDE’12), Scottsdale, AZ, 20 May 2012, p.7. New
York: ACM Press.

17. Hansuddhisuntorn K and Horanont T. Improvement of
TD-TR algorithm for simplifying GPS trajectory data.
In: Proceedings of the 2019 1st international conference on

smart technology and urban development (STUD), Chiang
Mai, Thailand, 13–14 December 2019, pp.1–6. New
York: IEEE Computer Society.

18. Leiva LA and Vidal E. Warped K-means: an algorithm
to cluster sequentially-distributed data. Inform Sciences

2013; 237: 196–210.
19. Li L, Xia X, Liu X, et al. Batched trajectory compression

algorithm based on hierarchical grid coordinates. In:

Amigo et al. 21

https://orcid.org/0000-0001-7138-5508
https://orcid.org/0000-0001-8912-5165
https://orcid.org/0000-0001-8912-5165
http://arxiv.org/abs/2003.11547
http://arxiv.org/abs/2003.11547
https://danielamigo.github.io/trajectorySummarisationReview/
https://danielamigo.github.io/trajectorySummarisationReview/


Proceedings of the 2019 IEEE 10th international confer-

ence on software engineering and service science

(ICSESS), Beijing, China, 18–20 October 2019, pp.414–

418. New York: IEEE Computer Society.
20. Liu J, Li H, Yang Z, et al. Adaptive Douglas–Peucker

algorithm with automatic thresholding for AIS-based

vessel trajectory compression. IEEE Access 2019; 7:

150677–150692.
21. Palma AT, Bogorny V, Kuijpers B, et al. A clustering-

based approach for discovering interesting places in tra-

jectories. In: Proceedings of the 2008 ACM symposium on

applied computing (SAC’08), Fortaleza, Brazil, 16–20

March 2008, p.863. New York: ACM Press.
22. Richter K-F, Schmid F and Laube P. Semantic trajectory

compression: representing urban movement in a nutshell.

J Spat Inf Sci 2012; 4(4): 3–30.
23. Soares A Jr, Moreno BN, Times VC, et al. GRASP-UTS:

an algorithm for unsupervised trajectory segmentation.

Int J Geogr Inf Sci 2015; 29(1): 46–68.
24. Soares A Jr, Times VC, Renso C, et al. A semi-supervised

approach for the semantic segmentation of trajectories.

In: Proceedings of the 2018 19th IEEE international con-

ference on mobile data management (MDM), Aalborg,

25–28 June 2018, pp.145–154. New York: IEEE Com-

puter Society.
25. Song R, Sun W, Zheng B, et al. PRESS: a novel frame-

work of trajectory compression in road networks. Proc

VLDB Endow 2014; 7(9): 661–672.
26. Wang T. An online data compression algorithm for tra-

jectories (An OLDCAT). Int J Inf Educ Technol 2013; 3:

480–487.
27. Yuan G, Zhu M, Qiao S, et al. Sparse high-noise GPS

trajectory data compression and recovery based on

compressed sensing. IEICE T Fund Electr 2018; E101-A:

811–821.
28. Zhao Y, Shang S, Wang Y, et al. REST: a reference-

based framework for spatio-temporal trajectory com-

pression. In: Proceedings of the 24th ACM SIGKDD

international conference on knowledge discovery and data

mining, London, 19–23 August 2018, pp.2797–2806.

New York: ACM Press.
29. Katsikouli P, Sarkar R and Gao J. Persistence based

online signal and trajectory simplification for mobile

devices. In: Proceedings of the 22nd ACM SIGSPATIAL

international conference on advances in geographic infor-

mation systems (SIGSPATIAL’14), Dallas, TX, 4–7

November 2014, pp.371–380. New York: ACM Press.
30. Rana R, Hu W, Wark T, et al. An adaptive algorithm for

compressive approximation of trajectory (AACAT) for

delay tolerant networks. In: Marrón PJ and Whitehouse

K (eds) Wireless sensor networks, vol. 6567 (Lecture notes

in computer science). Berlin; Heidelberg: Springer, 2011,

pp.33–48.
31. Rana R, Yang M, Wark T, et al. SimpleTrack: adaptive

trajectory compression with deterministic projection

matrix for mobile sensor networks. IEEE Sens J 2015;

15(1): 365–373.
32. Siddique C and Ban XJ. State-dependent self-adaptive

sampling (SAS) method for vehicle trajectory data. Trans-

port Res C: Emer 2019; 100: 224–237.

33. Siddique C and Ban J. Self-adaptive online trajectory

sampling (SAOTS) using spectral domain properties.

Transp Res Proc 2019; 38: 874–893.
34. Feldman D, Sugaya A and Rus D. An effective coreset

compression algorithm for large scale sensor networks.

In: Proceedings of the 11th international conference on

information processing in sensor networks (IPSN’12),

Beijing, China, 16–20 April 2012. New York: ACM

Press.
35. Garcia J, Concha OP, Molina JM, et al. Trajectory clas-

sification based on machine-learning techniques over

tracking data. In: Proceedings of the 2006 9th interna-

tional conference on information fusion, Florence, 10–13

July 2006, pp.1–8. New York: IEEE Computer Society.

36. Besada J, De Miguel G, Soto A, et al. TRES: multiradar-

multisensor data processing assessment using opportunity

targets. In: Proceedings of the 2008 IEEE radar confer-

ence, Rome, 26–30 May 2008, pp.1–6. New York: IEEE

Computer Society.
37. Garcia J, Besada Portas JA, Molina JM, et al. Model-

based trajectory reconstruction with IMM smoothing

and segmentation. Inform Fusion 2015; 22: 127–140.
38. Kamalzadeh H, Ahmadi A and Mansour S. A shape-

based adaptive segmentation of time-series using particle

swarm optimization. Inform Syst 2017; 67: 1–18.
39. Bellman RE. On the approximation of curves by line seg-

ments using dynamic programming. Commun ACM 1961;

4(6): 284–286.
40. Bellman RE and Kotkin B. On the approximation of

curves by line segments using dynamic programming –

II, 1962, https://www.rand.org/content/dam/rand/pubs/

research_memoranda/2008/RM2978.pdf
41. Cao W and Li Y. DOTS: an online and near-optimal tra-

jectory simplification algorithm. J Syst Software 2017;

126: 34–44.
42. Imai H and Iri M. Polygonal approximations of a curve

– formulations and algorithms. Mach Intell Patt Rec

1988; 6: 71–86 (also published In: Toussaint GT (ed.)

Computational morphology, vol. 6. North-Holland

Publishing Company, 1988, pp.71–86.).
43. Chan WS and Chin F. Approximation of polygonal

curves with minimum number of line segments. In: Ibar-

aki T, Inagaki Y, Iwama K, et al. (eds) Algorithms and

computation, vol. 650 (ed Goos G and Hartmanis J; Lec-

ture notes in computer science). Berlin; Heidelberg:

Springer, 1992, pp.378–387.
44. Chen M, Xu M and Franti P. A fast O(N) multiresolu-

tion polygonal approximation algorithm for GPS trajec-

tory simplification. IEEE T Image Process 2012; 21(5):

2770–2785.
45. Daescu O. New results on path approximation. Algorith-

mica 2004; 38(1): 131–143.
46. Daescu O and Mi N. Polygonal chain approximation: a

query based approach. Comput Geom 2005; 30(1): 41–58.
47. Gotsman R and Kanza Y. A dilution-matching-encoding

compaction of trajectories over road networks. GeoInfor-

matica 2015; 19(2): 331–364.
48. Kellaris G, Pelekis N and Theodoridis Y. Map-matched

trajectory compression. J Syst Software 2013; 86(6):

1566–1579.

22 International Journal of Distributed Sensor Networks

https://www.rand.org/content/dam/rand/pubs/research_memoranda/2008/RM2978.pdf
https://www.rand.org/content/dam/rand/pubs/research_memoranda/2008/RM2978.pdf


49. Kolesnikov A. Fast algorithm for ISE-bounded polygo-
nal approximation. In: Proceedings of the 2008 15th IEEE

international conference on image processing, San Diego,
CA, 12–15 October 2008, pp.1013–1016. New York:

IEEE Computer Society.
50. Lange R, Dürr F and Rothermel K. Online trajectory

data reduction using connection-preserving dead reckon-
ing. In: Proceedings of the 5th international ICST confer-

ence on mobile and ubiquitous systems: computing,

networking and services, Dublin, 21–25 July 2008. Brus-
sels: Institute for Computer Sciences, Social-Informatics
and Telecommunications Engineering (ICST).

51. Latecki LJ and Lakämper R. Polygon evolution by ver-
tex deletion. In: Nielsen M, Johansen P, Olsen OF, et al.

(eds) Scale-space theories in computer vision, vol. 1682 (ed
G Goos, J Hartmanis and J Van Leeuwen; Lecture notes
in computer science). Berlin; Heidelberg: Springer, 1999,
pp.398–409.

52. Nibali A and He Z. Trajic: an effective compression sys-
tem for trajectory data. IEEE T Knowl Data En 2015;
27(11): 3138–3151.

53. Panagiotakis C, Pelekis N, Kopanakis I, et al. Segmenta-
tion and sampling of moving object trajectories based on

representativeness. IEEE T Knowl Data En 2012; 24(7):
1328–1343.

54. Pulshashi IR, Bae H, Choi H, et al. Simplification and
detection of outlying trajectories from batch and stream-
ing data recorded in harsh environments. ISPRS Int J

Geo-Inf 2019; 8(6): 272.
55. Wu F, Fu K, Wang Y, et al. A graph-based min-# and

error-optimal trajectory simplification algorithm and its
extension towards online services. ISPRS Int J Geo-Inf

2017; 6(1): 19.
56. Zhang Y, Shi G, Li S, et al. Vessel trajectory online

multi-dimensional simplification algorithm. J Navigation

2020; 73(2): 342–363.
57. Zhao P, Zhao Q, Zhang C, et al. CLEAN: frequent

pattern-based trajectory spatial-temporal compression on
road networks. In: Proceedings of the 2019 20th IEEE

international conference on mobile data management

(MDM), Hong Kong, China, 10–13 June 2019, pp.605–

610. New York: IEEE Computer Society.
58. Chen C, Ding Y, Wang Z, et al. VTracer: when online

vehicle trajectory compression meets mobile edge com-
puting. IEEE Syst J 2020; 14: 1635–1646.

59. Deng Z, Han W, Wang L, et al. An efficient online
direction-preserving compression approach for trajectory
streaming data. Future Gener Comp Sy 2017; 68: 150–162.

60. Long C, Wong RC-W and Jagadish HV. Direction-pre-
serving trajectory simplification. Proc VLDB Endow

2013; 6(10): 949–960.
61. Bashir M, Ashraf J, Habib A, et al. An intelligent linear

time trajectory data compression framework for smart
planning of sustainable metropolitan cities. T Emerg Tel-

ecommun T, https://onlinelibrary.wiley.com/doi/abs/
10.1002/ett.3886 (10 February 2020, accessed 27 April
2020).

62. Bermingham L and Lee I. A framework of spatio-
temporal trajectory simplification methods. Int J Geogr

Inf Sci 2017; 31: 1128–1153.

63. Cui G, Bian W and Wang X. Hidden Markov map
matching based on trajectory segmentation with heading
homogeneity. GeoInformatica 2021; 25: 179–206.

64. Ji Y, Zang Y, Luo W, et al. Clockwise compression for
trajectory data under road network constraints. In: Pro-

ceedings of the 2016 IEEE international conference on big

data (Big Data), Washington, DC, 5–8 December 2016,
pp.472–481. New York: IEEE Computer Society.

65. Kolesnikov A. Efficient online algorithms for the polygo-
nal approximation of trajectory data. In: Proceedings of

the 2011 IEEE 12th international conference on mobile

data management, Lulea, 6–9 June 2011, pp.49–57. New
York: IEEE Computer Society.

66. Lee J-G, Han J and Whang K-Y. Trajectory clustering: a

partition-and-group framework. In: Proceedings of the

2007 ACM SIGMOD international conference on manage-

ment of data (SIGMOD’07), Beijing, China, 11–14 June
2007, vol. 12. New York: ACM Press.

67. Lin X, Ma S, Zhang H, et al. One-pass error bounded

trajectory simplification. Proc VLDB Endow 2017; 10:
841–852.

68. Liu J, Zhao K, Sommer P, et al. Bounded Quadrant Sys-
tem: error-bounded trajectory compression on the go. In:
Proceedings of the 2015 IEEE 31st international

conference on data engineering, Seoul, South Korea, 13–
17 April 2015, pp.987–998. New York: IEEE Computer
Society.

69. Liu J, Zhao K, Sommer P, et al. A novel framework for
online amnesic trajectory compression in resource-
constrained environments. IEEE T Knowl Data En 2016;
28: 2827–2841.

70. Meng Q, Yu X, Yao C, et al. Improvement of OPW-TR
algorithm for compressing GPS trajectory data. J Inf Pro-

cess Syst 2017; 13(3): 533–545.
71. Alvares LO, Bogorny V, Kuijpers B, et al. A model for

enriching trajectories with semantic geographical infor-
mation. In: Proceedings of the 15th annual ACM interna-

tional symposium on advances in geographic information

systems (GIS’07), Seattle, WA, 7–9 November 2007, p.1.
New York: ACM Press.

72. Pan W, Yao C, Li X, et al. An online compression algo-
rithm for positioning data acquisition. Informatica 2014;

38: 339–346.
73. Patroumpas K, Alevizos E, Artikis A, et al. Online event

recognition from moving vessel trajectories. GeoInforma-

tica 2017; 21(2): 389–427.
74. Patroumpas K, Pelekis N and Theodoridis Y. On-the-fly

mobility event detection over aircraft trajectories. In: Pro-
ceedings of the 26th ACM SIGSPATIAL international

conference on advances in geographic information systems,
Seattle, WA, 6–9 November 2018, pp.259–268. New York:

ACM Press.
75. Potamias M, Patroumpas K and Sellis T. Sampling tra-

jectory streams with spatiotemporal criteria. In: Proceed-
ings of the 18th international conference on scientific and

statistical database management (SSDBM’06), Vienna,
3–5 July 2006, pp.275–284. New York: IEEE Computer
Society.

76. Resheff YS. Online trajectory segmentation and summary
with applications to visualization and retrieval. In:

Amigo et al. 23

https://onlinelibrary.wiley.com/doi/abs/10.1002/ett.3886
https://onlinelibrary.wiley.com/doi/abs/10.1002/ett.3886


Proceedings of the 2016 IEEE international conference on

big data (Big Data), Washington, DC, 5–8 December

2016, pp.1832–1840. New York: IEEE Computer Society.
77. Reumann K and Witkam A. Optimizing curve segmenta-

tion in computer graphics. In: Proceedings of the interna-

tional computing symposium, 7 January 1974, https://

jglobal.jst.go.jp/en/detail?JGLOBAL_ID=201002064588

396801
78. Sánchez-Heres LF. Simplification and event identification

for AIS trajectories: the equivalent passage plan method.

J Navigation 2019; 72(2): 307–320.
79. Sheng K, Liu Z, Zhou D, et al. Research on ship classifi-

cation based on trajectory features. J Navigation 2018;

71(1): 100–116.
80. Tang J, Liu L and Wu J. A trajectory partition method

based on combined movement features. Wirel Commun

Mob Com 2019; 2019: 7803293.
81. Trajcevski G, Cao H, Scheuermanny P, et al. On-line data

reduction and the quality of history in moving objects

databases. In: Proceedings of the 5th ACM international

workshop on data engineering for wireless and mobile

access (MobiDE’06), Chicago, IL, 25 June 2006, p.19.

New York: ACM Press.
82. Yan Z, Giatrakos N, Katsikaros V, et al. SeTraStream:

semantic-aware trajectory construction over streaming

movement data. In: Pfoser D, Tao Y and Mouratidis K,

et al. (eds) Advances in spatial and temporal databases,

vol. 6849 (Lecture notes in computer science). Berlin; Hei-

delberg: Springer, 2011, pp.367–385.
83. Yin H, Gao H, Wang B, et al. Efficient trajectory com-

pression and queries, http://arxiv.org/abs/2007.04503 (13

October 2020, accessed 26 January 2021).
84. Zheng Y, Zhang L, Ma Z, et al. Recommending friends

and locations based on individual location history. ACM

T Web 2011; 5(1): 1–44.
85. Ke B, Shao J, Zhang Y, et al. An online approach for

direction-based trajectory compression with error bound

guarantee. In: Li F, Shim K, Zheng K, et al. (eds) Web

technologies and applications, vol. 9931 (Lecture notes in

computer science). Cham: Springer, 2016, pp.79–91.
86. Ke B, Shao J and Zhang D. An efficient online approach

for direction-preserving trajectory simplification with

interval bounds. In: Proceedings of the 2017 18th IEEE

international conference on mobile data management

(MDM), Daejeon, South Korea, 29 May–1 June 2017,

pp.50–55. New York: IEEE Computer Society.
87. Long C, Wong RC-W and Jagadish HV. Trajectory sim-

plification: on minimizing the direction-based error. Proc

VLDB Endow 2014; 8(1): 49–60.
88. Zhao Z and Saalfeld A. Linear-time sleeve-fitting polyline

simplification algorithms. In: Proceedings of the Auto-

Carto 13, Seattle, WA, 7–10 April 1997, pp.214–223.

Maryland: American Society for Photogrammetry and

Remote Sensing (ASPRS). Bethesda: American Congress

on Surveying and Mapping .
89. Liu K, Li Y, Dai J, et al. Compressing large scale urban tra-

jectory data. In: Proceedings of the 4th international workshop

on cloud data and platforms (CloudDP’14), Amsterdam, 13

April 2014, pp.1–6. New York: ACM Press.

90. Balzano W and Del Sorbo MR. CoTracks: a new lossy

compression schema for tracking logs data based on mul-

tiparametric segmentation. In: Proceedings of the 2011 1st

international conference on data compression, communica-

tions and processing, Palinuro, 21–24 June 2011, pp.168–

171. New York: IEEE Computer Society.
91. Etemad M, Soares A, Etemad E, et al. SWS: an unsuper-

vised trajectory segmentation algorithm based on change

detection with interpolation kernels. GeoInformatica

2021; 25: 269–289.
92. Etemad M, Soares A Jr, Rose J, et al. A trajectory seg-

mentation algorithm based on interpolation-based change

detection strategies, 2019, http://rgdoi.net/10.13140/

RG.2.2.34157.03049 (accessed 26 June 2020).
93. Etemad M, Etemad Z, Soares A, et al. Wise sliding win-

dow segmentation: a classification-aided approach for

trajectory segmentation, http://arxiv.org/abs/2003.10248

(23 March 2020, accessed 28 June 2020).
94. Gao M and Shi G-Y. Ship spatiotemporal key feature

point online extraction based on AIS multi-sensor data

using an improved sliding window algorithm. Sensors

2019; 19(12): 2706.
95. Guo Q, Wang H, He J, et al. Graphic simplification and

intelligent adjustment methods of road networks for navi-

gation with reduced precision. ISPRS Int J Geo-Inf 2020;

9(8): 490.

96. Han Y, Sun W and Zheng B. COMPRESS: a compre-

hensive framework of trajectory compression in road net-

works. ACM T Database Syst 2017; 42(2): 1–49.
97. Kim J. Feature-first add-on for trajectory simplification

in lifelog applications. Sensors 2020; 20(7): 1852.
98. Liu X, Lin Z and Wang H. Novel online methods for

time series segmentation. IEEE T Knowl Data En 2008;

20(12): 1616–1626.
99. Marino DL and Manic M. Fast trajectory simplification

algorithm for natural user interfaces in Robot program-

ming by demonstration. In: Proceedings of the 2016 IEEE

25th international symposium on industrial electronics

(ISIE), Santa Clara, CA, 8–10 June 2016, pp.905–911.

New York: IEEE Computer Society.
100. Muckell J, Hwang J-H, Patil V, et al. SQUISH: an

online approach for GPS trajectory compression. In:

Proceedings of the 2nd international conference on com-

puting for geospatial research and applications (COM.

Geo’11), Washington, DC, 23–25 May 2011, pp.1–8.

New York: ACM Press.
101. Muckell J, Olsen PW, Hwang J-H, et al. Compression

of trajectory data: a comprehensive evaluation and new

approach. GeoInformatica 2014; 18(3): 435–460.
102. Opheim H. Smoothing a digitized curve by data reduc-

tion methods. In: Encarnacao JL (ed.) Eurographics con-

ference proceedings. Geneva: The Eurographics

Association, 1981, pp.127–135.
103. Su H, Zheng K, Zeng K, et al. Making sense of trajec-

tory data: a partition-and-summarization approach. In:

Proceedings of the 2015 IEEE 31st international confer-

ence on data engineering, Seoul, South Korea, 13–17

April 2015, pp.963–974. New York: IEEE Computer

Society.

24 International Journal of Distributed Sensor Networks

https://jglobal.jst.go.jp/en/detail?JGLOBAL_ID=201002064588396801
https://jglobal.jst.go.jp/en/detail?JGLOBAL_ID=201002064588396801
https://jglobal.jst.go.jp/en/detail?JGLOBAL_ID=201002064588396801
http://arxiv.org/abs/2007.04503
http://rgdoi.net/10.13140/RG.2.2.34157.03049
http://rgdoi.net/10.13140/RG.2.2.34157.03049
http://arxiv.org/abs/2003.10248


104. Su H, Zheng K, Zeng K, et al. STMaker: a system to

make sense of trajectory data. Proc VLDB Endow 2014;

7(13): 1701–1704.
105. Sun S, Chen Y, Piao Z, et al. Vessel AIS trajectory

online compression based on scan-pick-move algorithm

added sliding window. IEEE Access 2020; 8:

109350–109359.
106. Tampakis P, Pelekis N, Doulkeridis C, et al. Scalable

distributed subtrajectory clustering. In: Proceedings of

the 2019 IEEE international conference on big data (Big

Data), Los Angeles, CA, 9–12 December 2019, pp.950–

959. New York: IEEE Computer Society.
107. Wei Z, Xie X and Zhang X. AIS trajectory simplifica-

tion algorithm considering ship behaviours. Ocean Eng

2020; 216: 108086.
108. Li H, Kulik L and Ramamohanarao K. Spatio-temporal

trajectory simplification for inferring travel paths. In:

Proceedings of the 22nd ACM SIGSPATIAL interna-

tional conference on advances in geographic information

systems (SIGSPATIAL’14), Dallas, TX, 4–7 November

2014, pp.63–72. New York: ACM Press.
109. Pikaz A and Dinstein I. An algorithm for polygonal

approximation based on iterative point elimination. Pat-

tern Recogn Lett 1995; 16(6): 557–563.
110. Van Hunnik R. Extensive comparison of trajectory sim-

plification algorithms. Utrecht: Utrecht University, 2017,

22 pp.

111. Visvalingam M and Whyatt JD. Line generalisation by

repeated elimination of points. Cartogr J 1993; 30:

46–51.
112. Yan Z, Liu Z and Yuan Q. HESAVE: an approach for

online heuristic GPS trajectory sampling. In: Skuli-

mowski AMJ, Sheng Z, Khemiri-Kallel S, et al. (eds)

Internet of vehicles: technologies and services towards

smart city, vol. 11253 (Lecture notes in computer sci-

ence). Cham: Springer, 2018, pp.193–207.
113. Birnbaum J, Meng H-C, Hwang J-H, et al. Similarity-

based compression of GPS trajectory data. In: Proceed-

ings of the 2013 4th international conference on computing

for geospatial research and application, San Jose, CA,

22–24 July 2013, pp.92–95. New York: IEEE Computer

Society.
114. Douglas DH and Peucker TK. Algorithms for the reduc-

tion of the number of points required to represent a line

or its caricature. Can Cartogr 1973; 10: 112–122.
115. Feng S, Chen L, Ma M, et al. A turning contour main-

taining method of trajectory data compression. IOP C

Ser Earth Env 2020; 513: 012058.
116. Hershberger J and Snoeyink J. Speeding up the Dou-

glas–Peucker line-simplification algorithm. In: Proceed-

ings of the 5th international symposium on spatial data

handling, Charleston, S.C., USA., 3-7 August 2000.

Humanities and Social Sciences Computing Lab, Uni-

versity of South Carolina.
117. Lin C-Y, Hung C-C and Lei P-R. A velocity-preserving

trajectory simplification approach. In: Proceedings of the

2016 conference on technologies and applications of artificial

intelligence (TAAI), Hsinchu, Taiwan, 25–27 November

2016, pp.58–65. New York: IEEE Computer Society.

118. Popa IS, Zeitouni K, Oria V, et al. Spatio-temporal

compression of trajectories in road networks. GeoInfor-

matica 2015; 19(1): 117–145.
119. Qian H and Lu Y. Simplifying GPS trajectory data with

enhanced spatial-temporal constraints. ISPRS Int J

Geo-Inf 2017; 6(11): 329.
120. Singh AK, Aggarwal V, Saxena P, et al. Performance

analysis of trajectory compression algorithms on marine

surveillance data. In: Proceedings of the 2017 international

conference on advances in computing, communications and

informatics (ICACCI), Udupi, India, 13–16 September

2017, pp.1074–1079. New York: IEEE Computer Society.
121. Tamilmani R and Stefanakis E. Semantically enriched

simplification of trajectories. Proc Int Cartogr Assoc

2019; 2: 1–8.
122. Yang M, Yan X, Zhang X, et al. Constrained trajectory

simplification with speed preservation. Cartogr Geogr

Inf Sc 2020; 47(2): 110–124.
123. Yuan D and Wang Y. A multi-UAVs’ trajectory data

compression method based on 3D-SPM algorithm. In:

Proceedings of the 2020 39th Chinese control conference

(CCC), Shenyang, China, 27–29 July 2020, pp.6874–

6880. New York: IEEE Computer Society.
124. Zhou Y, Huang M, Jiang F, et al. A visualization-

oriented trajectory data compression method. In: Pro-

ceedings of the 2019 IEEE international geoscience and

remote sensing symposium (IGARSS’2019), Yokohama,

Japan, 28 July–2 August 2019, pp.3432–3435. New

York: IEEE Computer Society.
125. Liu G, Iwai M and Sezaki K. An online method for tra-

jectory simplification under uncertainty of GPS. IPSJ

Online Trans 2013; 6: 65–74.
126. De Vries GKD and Van Someren M. Machine learning for

vessel trajectories using compression, alignments and domain

knowledge. Expert Syst Appl 2012; 39(18): 13426–13439.
127. Zheng Y, Liu L, Wang L, et al. Learning transportation

mode from raw GPS data for geographic applications

on the web. In: Proceeding of the 17th international con-

ference on world wide web (WWW’08), Beijing, China,

21–25 April 2008, p.247. New York: ACM Press.
128. Chen Y, Jiang K, Zheng Y, et al. Trajectory simplifica-

tion method for location-based social networking ser-

vices. In: Proceedings of the 2009 international workshop

on location based social networks (LBSN’09), Seattle,

WA, 3 November 2009, p.33. New York: ACM Press.
129. Kulik L, Duckham M and Egenhofer M. Ontology-dri-

ven map generalization. J Visual Lang Comput 2005;

16(3): 245–267.
130. Tobler WR. Numerical map generalization (discussion

paper). Michigan Inter-University Community of Math-

ematical Geographers, 1966, http://www-personal.umi-

ch.edu/~copyrght/image/micmg/tobler/a/toblera.pdf
131. Tobler WR. An update to ‘Numerical Map Generaliza-

tion’. Cartographica 1989; 26(1): 7–25.
132. Vitter JS. Random sampling with a reservoir. ACM T

Math Software 1985; 11(1): 37–57.
133. Ramer U. An iterative procedure for the polygonal

approximation of plane curves. Comput Vision Graph

1972; 1(3): 244–256.

Amigo et al. 25

http://www-personal.umich.edu/~copyrght/image/micmg/tobler/a/toblera.pdf
http://www-personal.umich.edu/~copyrght/image/micmg/tobler/a/toblera.pdf


134. Perez J-C and Vidal E. Optimum polygonal approxima-
tion of digitized curves. Pattern Recogn Lett 1994; 15(8):
743–750.

135. Ray BK and Ray KS. A non-parametric sequential
method for polygonal approximation of digital curves.
Pattern Recogn Lett 1994; 15(2): 161–167.

136. Chung K-L, Yan W-M and Chen W-Y. Efficient algo-
rithms for 3-D polygonal approximation based on LISE
criterion. Pattern Recogn 2002; 35: 2539–2548.

137. Opheim H. Fast data reduction of a digitized curve.
Geo-Processing 1982; 2: 33–40.

138. Gao C, Zhao Y, Wu R, et al. Semantic trajectory com-
pression via multi-resolution synchronization-based

clustering. Knowl-Based Syst 2019; 174: 177–193.
139. Wang Z, Yuan G, Pei H, et al. Unsupervised learning

trajectory anomaly detection algorithm based on deep
representation. Int J Distrib Sens N. Epub ahead of print
4 December 2020. DOI: 10.1177/1550147720971504.

140. Visvalingam M. Cartographic information systems

research group. Hull: University of Hull, 1992, p.20.
141. Li X, Feng Z, Li Y, et al. Spatio-temporal vessel trajec-

tory smoothing using empirical mode decomposition
and wavelet transform. In: Proceedings of the 2019

IEEE 4th international conference on big data analytics

(ICBDA), Suzhou, China, 15–18 March 2019, pp.106–
111. New York: IEEE Computer Society.

142. Yang X, Stewart K, Tang L, et al. A review of GPS tra-
jectories classification based on transportation mode.
Sensors 2018; 18(11): 3741.

143. Feng T and Timmermans HJP. Transportation mode
recognition using GPS and accelerometer data. Trans-
port Res C: Emer 2013; 37: 118–130.

144. Pelekis N, Tampakis P, Vodas M, et al. In-DBMS
sampling-based sub-trajectory clustering. In: Proceed-

ings of the 20th international conference on extending

database technology, Venice, 21–24 March 2017.
OpenProceedings.org.

145. Kolesnikov A and Fränti P. Reduced-search dynamic

programming for approximation of polygonal curves.
Pattern Recogn Lett 2003; 24(14): 2243–2254.

146. Keogh E, Chu S, Hart D, et al. Segmenting time series: a
survey and novel approach. In: Kandel A, Bunke H and
Last M (eds) Data mining in time series databases (Series

in machine perception and artificial intelligence). Singa-
pore: World Scientific Publishing, 2004, pp.1–21.

147. Shatkay H and Zdonik SB. Approximate queries and
representations for large data sequences. In: Proceedings
of the 12th international conference on data engineering,
New Orleans, LA, 26 February–1 March 1996, pp.536–
545. New York: IEEE Computer Society.

148. Lange R, Dürr F and Rothermel K. Efficient real-time
trajectory tracking. VLDB J 2011; 20(5): 671–694.

149. Hunter J and McIntosh N. Knowledge-based event
detection in complex time series data. In: Horn W, Sha-
har Y, Lindberg G, et al. (eds) Artificial intelligence in

medicine, vol. 1620 (ed Goos G, Hartmanis J and Van
Leeuwen J; Lecture notes in computer science). Berlin;
Heidelberg: Springer, 1999, pp.271–280.

150. Lee J-G, Han J and Li X. Trajectory outlier detection: a
partition-and-detect framework. In: Proceedings of the

2008 IEEE 24th international conference on data

engineering, Cancun, Mexico, 7–12 April 2008, pp.140–
149. New York: IEEE Computer Society.

151. Cudre-Mauroux P, Wu E and Madden S. TrajStore: an
adaptive storage system for very large trajectory data
sets. In: Proceedings of the 2010 IEEE 26th international

conference on data engineering (ICDE’2010), Long
Beach, CA, 1–6 March 2010, pp.109–120. New York:
IEEE Computer Society.

152. Lin C-Y, Chen H-C, Chen Y-Y, et al. Compressing tra-

jectories using inter-frame coding, 2010, p.25, https://
www.iis.sinica.edu.tw/file/entry/8056/FULLTEXT/zh/tr
10007.pdf

153. Lovell DJ. Lossless compression of all vehicle trajec-

tories in a common roadway segment. Comput-Aided

Civ Inf 2018; 33(6): 481–497.
154. Xu D, Wang Y, Jia L, et al. Compression algorithm of

road traffic spatial data based on LZW encoding. J Adv

Transport 2017; 2017: 1–13.
155. Cao H and Wolfson O. Nonmaterialized motion infor-

mation in transport networks. In: Eiter T and Libkin L
(eds) Database theory: ICDT 2005, vol. 3363 (ed Hutchi-
son D, Kanade T, Kittler J, et al; Lecture notes in com-
puter science). Berlin; Heidelberg: Springer, 2004,
pp.173–188.

156. Zheng K, Zhao Y, Lian D, et al. Reference-based frame-
work for spatio-temporal trajectory compression and
query processing. IEEE T Knowl Data En 2020; 32:
2227–2240.

157. Li Z, Lee J-G, Li X, et al. Incremental clustering for tra-
jectories. In: Kitagawa H, Ishikawa Y, Li Q, et al. (eds)
Database systems for advanced applications. Berlin;
Heidelberg: Springer, 2010, pp.32–46.

158. Consultative Committee for Space Data Systems
(CCSDS). Lossless data compression. (CCSDS 1210-
B-3). Washington, DC: CCSDS, 2020.

159. Hatanaka Y. A compression format and tools for GNSS
observation data. Bull Geogr Surv Inst 2008; 55: 21–30.

160. Huang Y, Li Y, Zhang Z, et al. GPU-accelerated com-
pression and visualization of large-scale vessel trajec-
tories in maritime IoT industries. IEEE Internet Things

2020; 7(11): 10794–10812.
161. Zhao L and Shi G. A method for simplifying ship tra-

jectory based on improved Douglas–Peucker algorithm.
Ocean Eng 2018; 166: 37–46.

162. Amigo D, Sánchez Pedroche D, Garcı́a J, et al. Segmen-
tation optimization in trajectory-based ship classifica-
tion. In: Proceedings of the 15th international conference

on soft computing models in industrial and environmental

applications (SOCO), Burgos, 16–18 September 2020,
p.10. Cham: Springer.

163. Zhang S, Liu Z, Cai Y, et al. AIS trajectories simplifica-
tion and threshold determination. J Navigation 2016;
69(4): 729–744.

164. Guerrero JL, Berlanga A, Garcı́a J, et al. Piecewise lin-
ear representation segmentation as a multiobjective opti-
mization problem. In: De Leon F, De Carvalho AP,
Rodrı́guez-González S, et al. (eds) Distributed computing

and artificial intelligence. Berlin; Heidelberg: Springer,
2010, pp.267–274.

165. Fikioris G, Patroumpas K and Artikis A. Optimizing vessel
trajectory compression. In: Proceedings of the 2020 21st

26 International Journal of Distributed Sensor Networks

https://www.iis.sinica.edu.tw/file/entry/8056/FULLTEXT/zh/tr10007.pdf
https://www.iis.sinica.edu.tw/file/entry/8056/FULLTEXT/zh/tr10007.pdf
https://www.iis.sinica.edu.tw/file/entry/8056/FULLTEXT/zh/tr10007.pdf


IEEE international conference on mobile data management

(MDM), 2020, pp.281–286, https://www.computer.org/cs
dl/proceedings-article/mdm/2020/09162228/1m6hFt6gO52

166. Shuang S, Yan C and Jinsong Z. Trajectory outlier detec-
tion algorithm for ship AIS data based on dynamic differ-
ential threshold. J Phys Conf Ser 2020; 1437: 012013.

167. Zheng Y, Xie X and Ma W-Y. GeoLife: a collaborative
social networking service among user, location and tra-
jectory. IEEE Data Eng Bull 2010; 33: 32–39.

168. Tu E, Zhang G, Rachmawati L, et al. Exploiting AIS

data for intelligent maritime navigation: a comprehen-

sive survey from data to methodology. IEEE T Intell

Transp 2018; 19(5): 1559–1582.
169. Sánchez Pedroche D, Amigo D, Garcı́a J, et al. Archi-

tecture for trajectory-based fishing ship classification

with AIS data. Sensors 2020; 20(13): 3782.

Amigo et al. 27

https://www.computer.org/csdl/proceedings-article/mdm/2020/09162228/1m6hFt6gO52
https://www.computer.org/csdl/proceedings-article/mdm/2020/09162228/1m6hFt6gO52

